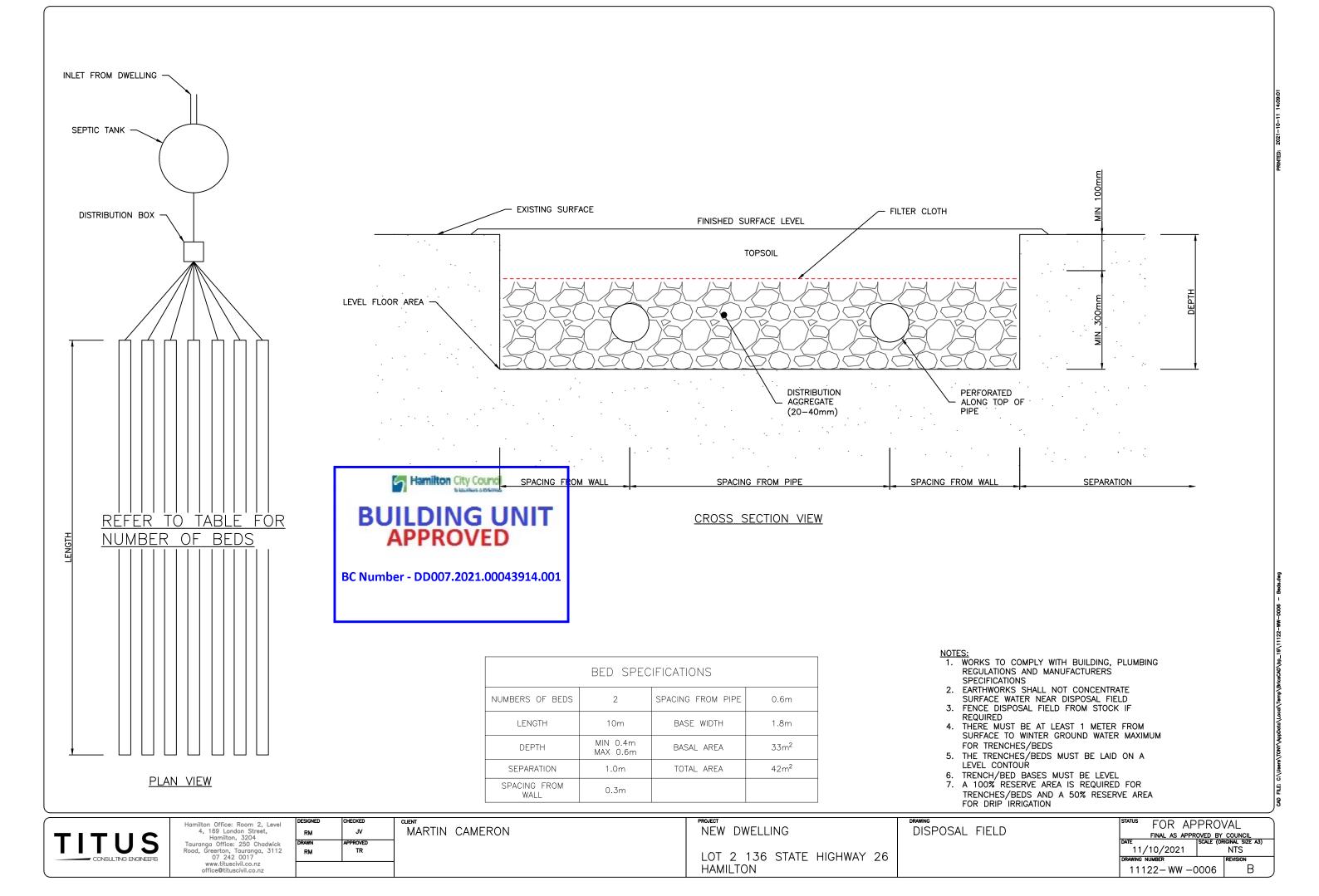
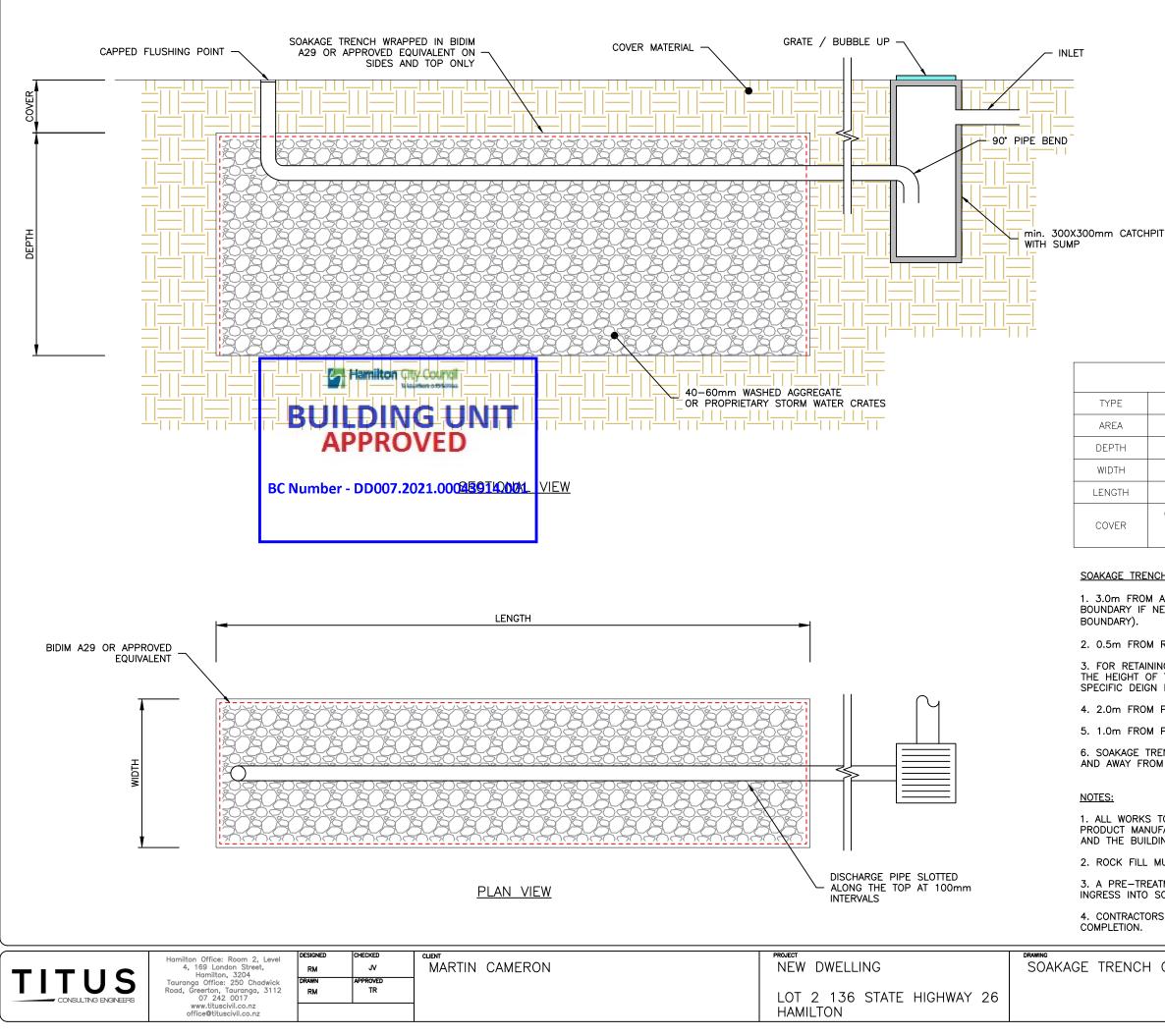


MINIMUM	SEPARATION DIS	STANCES	
	PRIMARY	SECONDARY	
DINGS/HOUSES ¹	3m	1.5m TO 3m	
ERTY/BOUNDARY ¹	1.5m	1.5m	
RFACE WATER ²	10m	10m	
SUPPLY BORE	20m	20m	
DUND WATER ²	600mm	300mm	
OD PLAIN ARI ¹	100 YEAR	20 YEAR	
BANKMENTS/ AINING WALLS ¹	3m FROM THE DRAINAGE MATERIAL.CUT BATTER INTERFACE OR 45° ANGLE FROM TOE OF WALL EXCAVATION (WHICH EVER IS GREATEST)		


NOTE 1: AS PER TP58 ON-SITE WASTEWATER SYSTEMS: DESIGN AND MANAGEMENT MANUAL


NOTE 2: AS PER WAIKATO REGIONAL PLAN

DISPOSAL FIELD	CHARACTERISTICS
SYSTEM	LPED BEDS
TREATMENT	SECONDARY
BASAL AREA	33m ²
TOTAL AREA	42m ²

PLAN IS INDICATIVE OFFSETS FOR SOAK, BE ADHERED TO; 1) 3.0m FROM BUI	AGE TRENCH S	
2) 1.5m FROM PR(3) 0.5m FROM RO/ IF CONTRACTOR CAN OFFSETS, ENGINEER PRIOR TO CONSTRUC ALL RUNOFF TO EN TO SOAKAGE DEVICE	AD BOUNDARY INOT ACHIEVE SHALL BE NO CTION. TER A SUMP	DTIFIED
DIES: WORKS TO COMPLY WI BUILD CONSENT CONDITI MANUFACTURERS SPECIFICA SURFACE WATER NEAR DIS FENCE DISPOSAL FIELD REQUIRED POSITION OF SEPTIC TANK AT CLIENTS DISCRETION	ONS AND PRODU TIONS NOT CONCENTRA POSAL FIELD FROM STOCK	CT TE IF
PLAN	FOR APF	ED BY COUNCIL
	DATE SI 11/10/2021 DRAWING NUMBER	cale (original size a3) NTS Irevision
	11122-WW-00	_

ΞĽË

SPECIFICATIONS				
	ROCK FILL	SW CRATES		
	34.6m²	20.1m²		
4	1.0m	0.86m		
ł	1m (MIN)	1m (MIN)		
Н	AS REQUIRED	AS REQUIRED		
7	0.3m (MINIMUM FOR NON—TRAFFICABLE AREAS)	AS PER MANUFACTURERS SPECIFICATION		

SOAKAGE TRENCH SETBACKS (RITS 4.2.15):

1. 3.0m FROM ANY BUILDING OR BOUNDARY (1.5m FROM BOUNDARY IF NEIGHBOURING BUILDING MUST BE 1.5m FROM

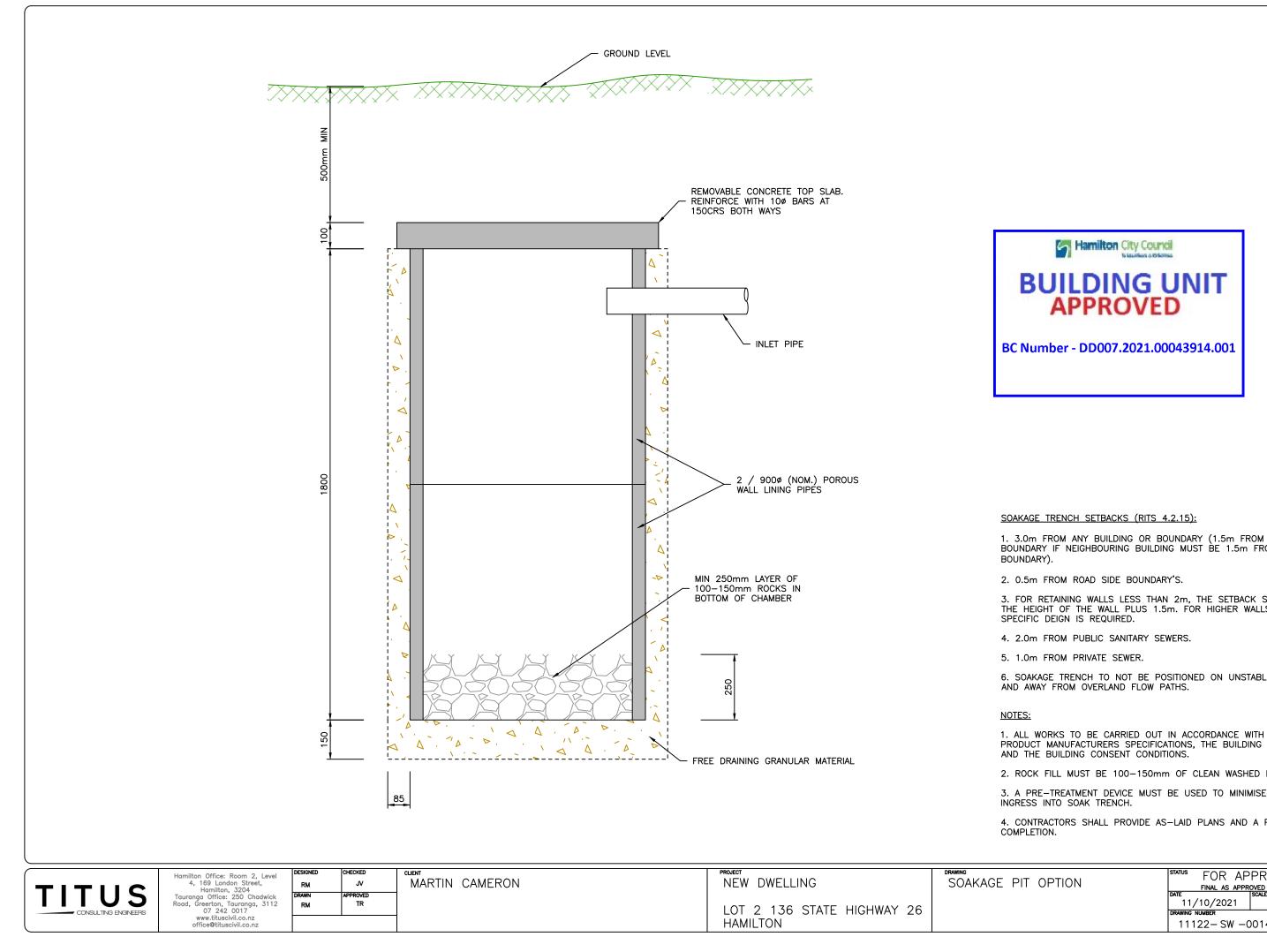
2. 0.5m FROM ROAD SIDE BOUNDARY'S.

3. FOR RETAINING WALLS LESS THAN 2m, THE SETBACK SHALL BE THE HEIGHT OF THE WALL PLUS 1.5m. FOR HIGHER WALLS A SPECIFIC DEIGN IS REQUIRED.

4. 2.0m FROM PUBLIC SANITARY SEWERS.

5. 1.0m FROM PRIVATE SEWER.

6. SOAKAGE TRENCH TO NOT BE POSITIONED ON UNSTABLE SLOPES AND AWAY FROM OVERLAND FLOW PATHS.


1. ALL WORKS TO BE CARRIED OUT IN ACCORDANCE WITH THE PRODUCT MANUFACTURERS SPECIFICATIONS, THE BUILDING CODE AND THE BUILDING CONSENT CONDITIONS.

2. ROCK FILL MUST BE 40-60mm OF CLEAN WASHED ROCK.

3. A PRE-TREATMENT DEVICE MUST BE USED TO MINIMISE SILT INGRESS INTO SOAK TRENCH.

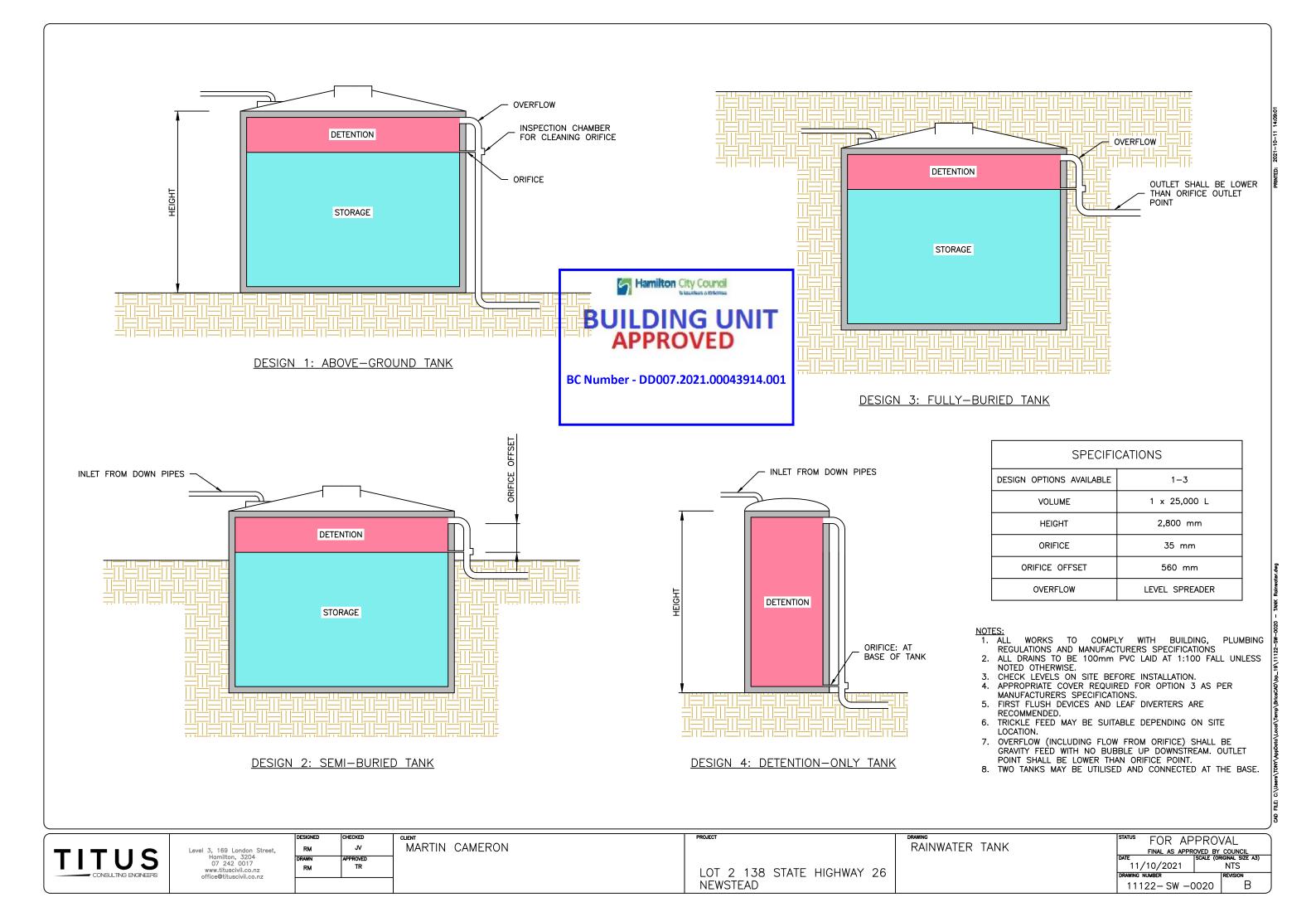
4. CONTRACTORS SHALL PROVIDE AS-LAID PLANS AND A PS3 ON

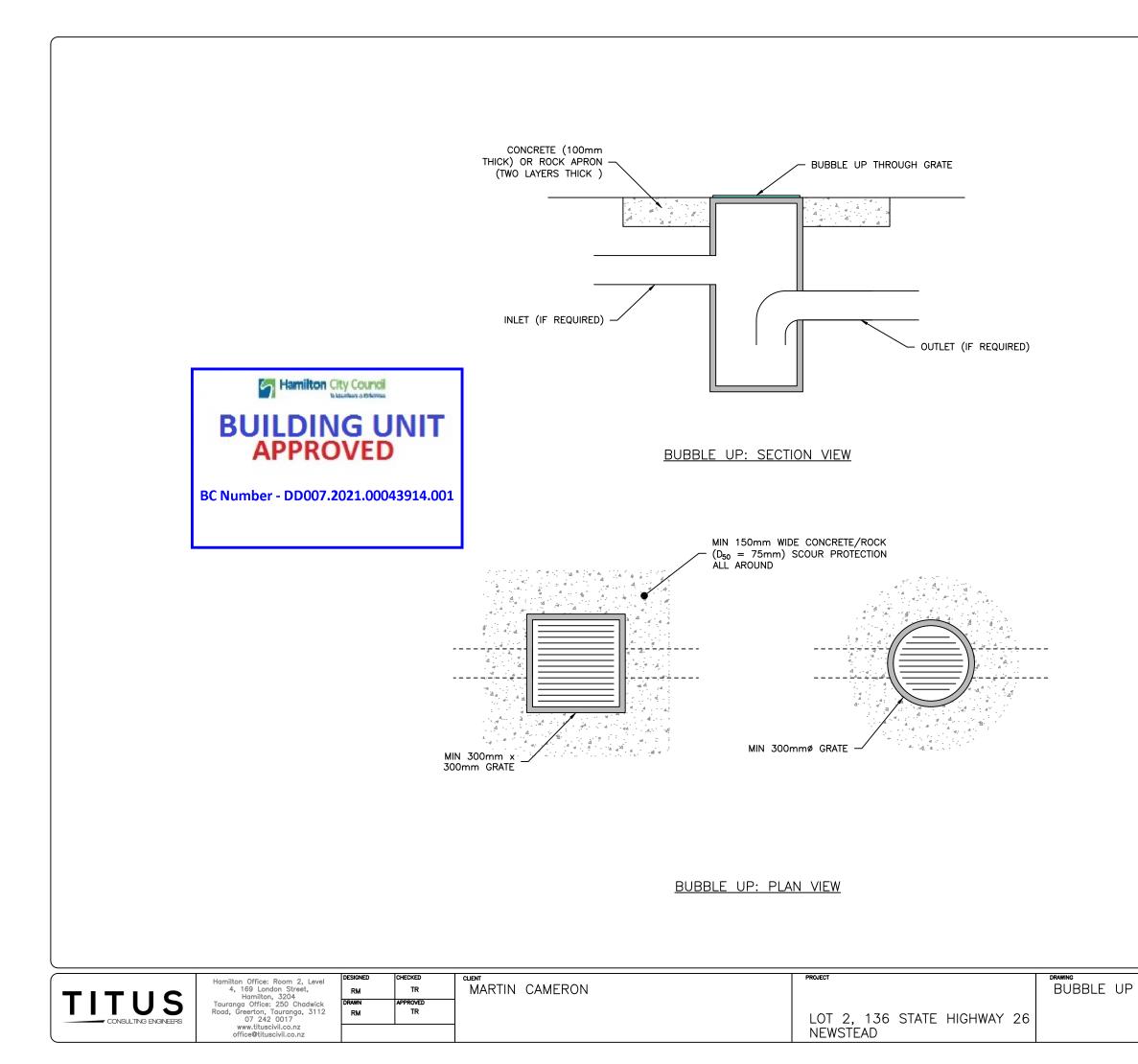
	STATUS FOR AF	PROVAL			
NCH OPTION FINAL AS APPROVED BY COUN					
	DATE	SCALE (ORIGINAL SIZE A3)			
	11/10/2021	NTS			
	DRAWING NUMBER	REVISION			
	11122-SW-	0010 A			

BOUNDARY IF NEIGHBOURING BUILDING MUST BE 1.5m FROM

3. FOR RETAINING WALLS LESS THAN 2m, THE SETBACK SHALL BE THE HEIGHT OF THE WALL PLUS 1.5m. FOR HIGHER WALLS A

6. SOAKAGE TRENCH TO NOT BE POSITIONED ON UNSTABLE SLOPES

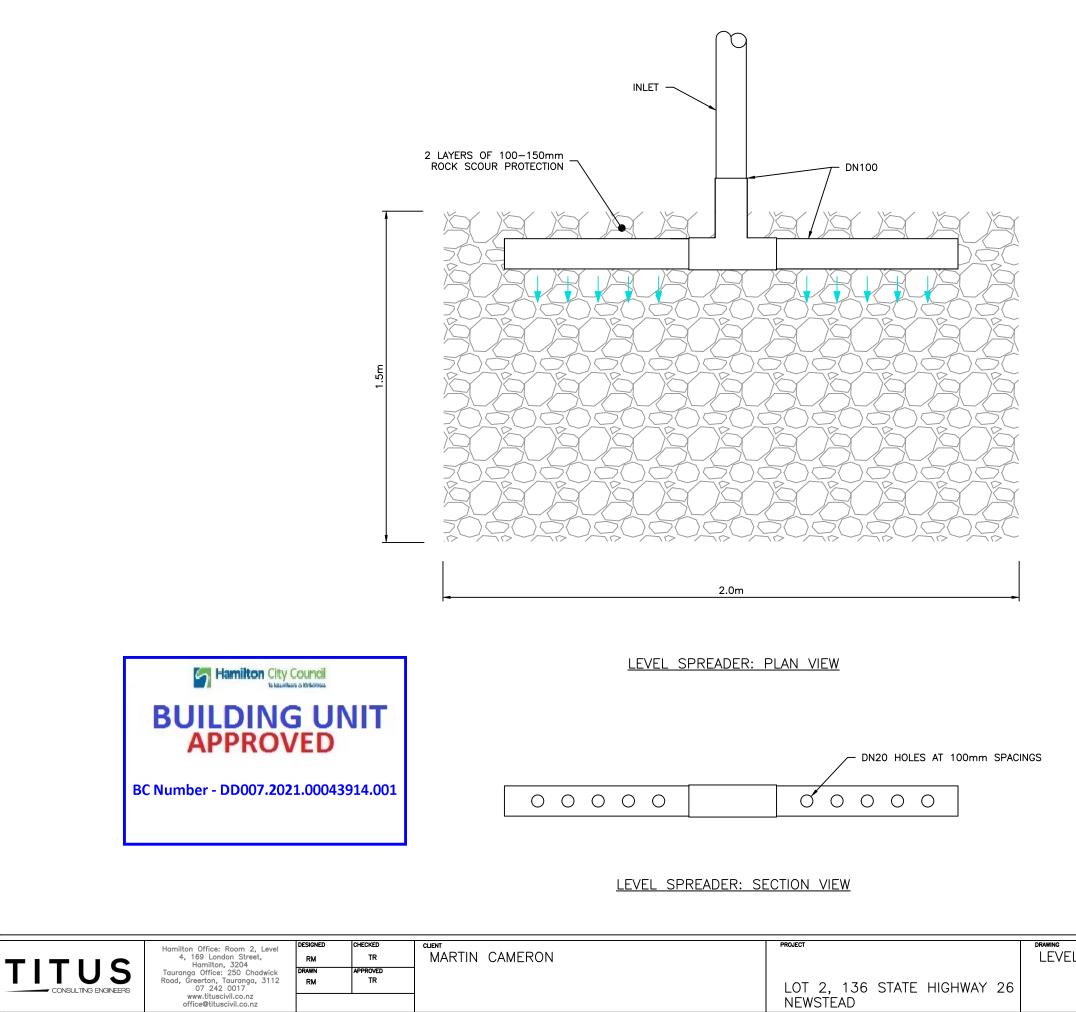

1. ALL WORKS TO BE CARRIED OUT IN ACCORDANCE WITH THE PRODUCT MANUFACTURERS SPECIFICATIONS, THE BUILDING CODE


2. ROCK FILL MUST BE 100-150mm OF CLEAN WASHED ROCK.

3. A PRE-TREATMENT DEVICE MUST BE USED TO MINIMISE SILT

4. CONTRACTORS SHALL PROVIDE AS-LAID PLANS AND A PS3 ON

	^{status} FOR A		./AI
OPTION	I UN A		VAL
OFTION	FINAL AS APP		
	DATE	SCALE (OF	RIGINAL SIZE A3)
	11/10/2021		NTS
	DRAWING NUMBER		REVISION
	11122-SW -	-0014	A



<u>NOTE</u> 1.	WORKS TO COMPLY WITH BUILD REGULATIONS AND MANUFACTUR	ING, ERS	PLUM	BING	
2.	SPECIFICATIONS CHAMBER TO BE LOCATED AS ANY STORM WATER NUISANCE		NOT	CAUSE	

AD FILE: C:\Users\TONY\AppData\Loca\Temp\BricsCAD\bp_19\11122-SW-0030 - OUTLET.

STATUS	FOR AP	PRO	/AL	
	FINAL AS APPR			
DATE	DATE SCALE (ORIGINAL SIZE A3)			
11/10/2021			NTS	
DRAWING	NUMBER		REVISION	
111	22-SW-0	A		

INTED: 2021-10-11 14:09:

TR

CONSULTING ENGINEERS

LOT	2,	136	STATE	HIGHWAY	26
NEW	STE	AD			

<u>NOT</u> 1.	WORKS TO	COMPLY V	VITH BUILDI	NG,	PLUM	BING	
2.	SPECIFICAT CHAMBER	IONS	CATED AS		NOT	CAUSE	

sCAD\bp_19\11122-SW-0031 AD FILE: C:\Users\TONY\AppData\Local\Temp\Bri

STATUS	FOR AP	PR0\	/AL `	
	FINAL AS APPR			
DATE		SCALE (ORIGINAL SIZE A3)		
11	/10/2021		NTS	
DRAWING	NUMBER	REVISION		
11	122-SW-C	A		

Native Plants Recommended for **Effluent Fields** (ETS Field).

Compiled by

Alter-Natives Wholesale Nursery. www.alter-natives.co.nz 571 Ormiston Road, Waipu, ph 09 4321333

The two main reasons for putting plants on effluent fields are:

- 1. To soak up the wastewater and transpire (the plants version of perspiring) it out through the plants foliage.
- 2. To absorb nutrients out of the wastewater so that it does not make its way into the underground water table and so on into stream systems.

Thus, plants that have a high transpiration rate, vigorous growth and are tolerant of wet soil conditions are best.

Plant spacings will vary depending upon species and mature size, but it's generally calculated at 1 plant per square metre of field. Thus a 200m square field should have 200 plants and so-on. When planting smaller grasses or lilies you may space them at 50-75cm while medium sized trees may be spaced at 1.2-1.5m, so overall with a mixed species planting it is typically 1 plant per metre.

The key differences between the two common types of effluent fields are:

- 1. Underground pipes (usually 100mm diameter pipes with small seepage holes along its length and *buried 600mm underground*)
- 2. Dripper lines on the ground surface (usually 15mm diameter hoses with drippers laid under mulch).

The biggest concern for the fields with underground pipes is the possibility of damage from large tree roots or blockage of the seepage holes along the pipes. Blockage is most likely to happen with deep rooting trees, or trees that will put out masses of feeder roots into water.

Many of the plants listed below can be viewed on our website. www.alter-natives.co.nz Or by visiting our nursery: Alter-Natives Wholesale Nursery, 571 Ormiston Rd, Waipu

Sources of information:

Auckland Regional Council Technical Sheet G-1: List of water tolerant plants suitable for on-site wastewater disposal systems City Council Northland Regional Council: Looking after your household sewage system. Above documents have been used by most engineers around Whangarei and Northland.

BC Number - DD007.2021.00043914.001

30-50cm

30-50cm

30-50cm 20-30cm

40-70cm

10-20cm

Plants that are highly recommended. (Suitable for both sorts of effluent fields).

<u>Botanical name</u>	Maori Name	Common Name	Typical height
Arthropodium cirratum	Rengarenga	Rock lily	20-40cm
Astelia grandis *		Swamp Astelia	1.5-2m
Carex dissita *		-	40-90cm
Carex flagellifera			50-70cm
Carex germinate			50cm-1m
Carex lessoniana			70cm-1.2m
Carex maorica *			50cm-1m
Carex secta	Purei, Pukio		70cm-1m
Carex tenuiculmis			50-70cm
Carex virgata			70cm-1m
Cortaderia fulvida	Toetoe, Kakaho	Cutty Grass	1-1.5m
Cortaderia toetoe	Toetoe, Kakaho	Cutty Grass	1.5-2m
Cyperus ustulatus *	Toetoe upokotangata	Giant umbrella sedge	60cm-1m
Dianella nigra	Turutu	NZ blue berry	30-60cm
Juncus gregiflorus *	Wiwi	Common rush	50cm-1.5m
Leptocarpus similis	Oioi	Jointed Rush	50-70cm
Machaerina sinclairi *	Pepepe, Toetoe tuhar	a	50cm-1m
Phormium tenax	Harakeke	Flax	1.5-2m
Phormium tenax purpurea		Purple Flax	1.5-2m
Uncinia unciniata *		Hook Grass	20-40cm
Spreading ground covers			
Botanical name	Maori Name	Common Name	Typical height
Coprosma acerosa	Tataraheke	Sand Coprosma	30-40cm
Coprosma atropurpurea *			5-10cm
Coprosma 'Hawera'			10-20cm
•			

Grasses, Grass-like or Flaxes, Flax-like

Coprosma prostrata Coprosma 'Taiko'

Coprosma kirkii

Coprosma 'Poor Knights'

Elatostema rugosum *

Fuchsia procumbins

Shrubs and small trees (typically less than 5m)

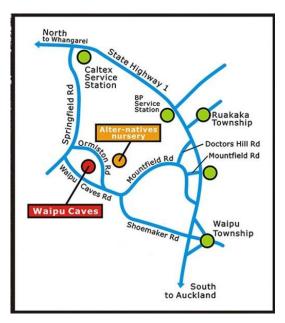
<u>Botanical name</u>	Maori Name	Common Name	Typical height
Brachyglottis repanda *	Rangiora		3-4m
Carpodetus serratus	Putaputaweta	Marble leaf	3-5m
Coprosma arborea *	Mamangi		3-4m
Coprosma areolate *	-	Thin-leaved coprosma	3-4m
Coprosma cultivars which are col	oured (lots of options)		1-3m
Coprosma propingua	Mingimingi		1-3m
Coprosma repens	Taupata	Mirror Plant	2-4m
Coprosma rhamnioides *	·		1-2m
Coprosma robusta	Karamu		2-4m
Clianthus puniceus	Kowhai ngutu-kaka	Kaka Beak	2-3m
Fuchsia excorticate *	Kotukutuku	Tree Fuchsia	3-5m
Geniostoma rupestre *	Hangehange		1-2m
Hebe Stricta	Koromiko		1-3m
Macropiper excelsus	Kawakawa		1-3m

parataniwha

Alter-natives Wholesale Nursery

www.alter-natives.co.nz

Trees (typically 5m or mor	re)			
<u>Botanical name</u>	Maori Name	Common Name	Typical height	
Kunzea ericoides	Kanuka	White Tea-tree	6-10m	
Cordyline australis	Ti kouka	Cabbage Tree	5-10m	
Leptospermum scoparium	Manuka	Tea-tree	4-8m	
Ferns				
<u>Botanical name</u>	Maori Name	Common Name	Typical height	
Blechnum novaezealandiae *	kiokio		1-2m	
Dicksonia squarrose	wheki	tree fern	3-5m	
Hypolepis dicksonioides *			1-1.5m	


Large trees that are recommended for effluent fields using dripper lines; or only for on the fringe of underground systems (3m or more away from pipes because of the potential for the plant roots damaging your pipes).

Trees (typically 5m or more)

Botanical name	Maori Name	Common Name	Typical height
Laurelia novae-zealandiae	Pukatea		10-20m
Corynocarpus laevigata	Karaka		8-15m
Dacrycarpus dacrydioides	Kahikatea	White pine	20-30m
Pittosporum eugenoides	Tarata	Lemonwood	6-10m
Aristotelia serrata	Makomako	Wineberry	6-10m
Pittosporum tenuifolium	Kohuhu	-	5-8m
Plagianthus regius	Manatu	Ribbonwood	8-12m
Hoheria populnea	Houhere		6-8m
Melicytus ramiflorus	Mahoe	Whiteywood	4-6m
Rhopalostylis sapida	Nikau	·	6-12m
Pennantia corymbose *	Kaikomako		6-10m
Schflera digitata	Pate, Pata	Seven finger	4-6m
Vitex luscens	Puriri	-	10-20m

Note: Plants marked with a * can sometimes be hard to find in nurseries around Northland.

Good luck. From the team at Alter-Natives Nursery.

Building Code Clause(s) E1, G13

PRODUCER STATEMENT - PS1 - DESIGN

ISSUED B	Y: Titus Con	sulting Engineers				
TO: Mart	in Cameron		·	Design Firm)	Hamilton City Council Bitaster of Mores	
TO BE SU	IPPLIED TO:	Hamilton City Counc	,	eveloper)		
		water Design, Wastev	vater Design	(Building Consent Authorit		
AT: 2/1	36 State Highway	/ 26	·			
Town/City:	Hamilton	(Address)	LOT 2	DP 556335	BC Number SO D007.2021.000439)14.001
We have been	engaged by the owne	er/developer referred to abo	ove to provide:			
Stormwater	Design, Wastewa	ater Design				
Otomwater	Design, wastewa		(Extent of Engag	ement)		m
		uirements of Clause(s) specified in the attachr		of the Buildir t), of the proposed	-	
The design of	carried out by us	has been prepared in a	accordance with:			
Complia	ance Documents	issued by the Ministry o	of Business, Innovatio	n & Employment	E1/VM1, G13/VM4 Or (Verification methods/acceptable solutions)	
Alternati	ve solution as pe	r the attached schedul	e		()	
The propose	ed building work c	overed by this produce	er statement is descr	ibed on the drawing	gs titled:	m
together with On behalf o (i) Site verifie	n the specification of the Design Firm cation of the follo	, Level Spreader, Disposal n, and other documents m , and subject to: wing design assumptio eeting their performand	s set out in the sched	lule attached to this	22-P-1,SW-11,20,31,WW-2,SW-30 s statement.	
documents p the persons	provided or listed who have underta monitoring/obset	in the attached sched aken the design have	ule, will comply with t	he relevant provision to the relevant provision to do so. I al	e drawings, specifications, and other ons of the Building Code and that b), so recommend the following level of	
I, Anthony	Richardson		am: 🔳 C	PEng # 1026340)	
I am a meml		Design Professional) eering New Zealand a	nd hold the following	qualifications: BSc	(Eng) Civil, MSc (Eng)	
The Design	Firm issuing this	statement holds a curr	ent policy of Professi	ional Indemnity Ins	urance no less than \$200,000*.	
The Design	Firm is a membe	r of ACE New Zealand	: 🔳			
SIGNED BY	Anthony Richa	ardson (Name of Design Pro	fessional)	(Signature)		
ON BEHAL	F OF Titus Con	sulting Engineers (Design Fi			Date 1/10/2021	
Note: This sta	atement shall only b	, ,	,	named above. Liabili	ty under this statement accrues to the	
Design Firm c	only. The total maxi	mum amount of damages	s payable arising from th	nis statement and all	other statements provided to the Building	

Consent Authority in relation to this building work, whether in contract, tort or otherwise (including negligence), is limited to the sum of \$200,000*. This form is to accompany Form 2 of the Building (Forms) Regulations 2004 for the application of a Building Consent. THIS FORM AND ITS CONDITIONS ARE COPYRIGHT TO ACE NEW ZEALAND AND ENGINEERING NEW ZEALAND

February 2020 (PDF)

ENGINEERING ASSESSMENT AND DESIGN REPORT

Lot 2 136 State Highway 26, Hamilton

Martin Cameron

11 OCTOBER 2021

CONSULTING ENGINEERS

PROJECT NO. 11122

BC Number - DD007.2021.00043914.001

Anthony Richardson Principal Project Engineer CPEng 1026340

DOCUMENT HISTORY AND STATUS

Rev.	Issued To	Date	Prepared	Reviewed	Approved
А	Martin Cameron	20/05/2020	RM	MH/JV	TR
В	Martin Cameron	27/05/2020	RM	MH/JV	TR
С	Martin Cameron	19/06/2020	RM	TR	TR
D	Martin Cameron	29/01/2021	RM	TR	TR
E	Martin Cameron	2/02/2021	RM	TR	TR
F1	Martin Cameron	11/10/2021	RM / JV	JV / TR	TR

RECORD OF REVISION CHANGES

Revision B – Revised slope stability recommendations.

Revision C – Model revised to reduce height of slope by 2m through onsite earthworks.

Revision D – Section 5: Slope Stability Assessment updated with new design of basement. WW Design updated

Revision E – Section 2.4: Changed recommendation table title

Revision F – Revised dwelling orientation, SW/WW locations, and proposed rainwater tank

TITUS Consulting Engineers

Hamilton Office: Level 3, Door 1, 169 London St

Ph: 07 242 0017

Email: office@tituscivil.co.nz

BUILDING UNIT APPROVED

BC Number - DD007.2021.00043914.001

TABLE OF CONTENTS

1		INTRODUCTION	5
	1.1	Overview	5
	1.2	Site Details	5
	1.3	Planning Requirements	6
2		SITE AND SOILS ASSESSMENT	7
	2.1	Assessment Parameters	7
	2.2	Soil Investigation	7
	2.3	Preliminary Liquefaction Assessment	8
	2.3.2	.1 Geological Setting	8
	2.3.2	.2 Seismic Parameters	8
	2.3.3	.3 Liquefaction Susceptibility	8
	2.4	Recommendations	9
	2.4.2	.1 SED Piled Foundation	9
3		STORMWATER ASSESSMENT AND DESIGN	
	3.1	Design Parameters	11
	3.1.2	.1 Attenuation Tank	
	3.1.2	.2 Soakage from other impermeable surfaces	
	3.1.3	.3 Secondary flow path	
	3.2	Operation and maintenance	12
	3.3	Construction Monitoring	12
4		WASTEWATER ASSESSMENT AND DESIGN	
	4.1	Design Parameters	13
	4.1.1	.1 Water Use Requirements	
	4.2	Treatment Design	13
	4.2.2	.1 Secondary Treatment System	
	4.2.2	.2 Wastewater Disposal	
	4.3	Maintenance, Operation and Planting	15
	4.4	Inspections	15
5		SLOPE STABILITY ASSESSMENT	
	5.1	Assessment parameters	16
	5.2	Historic Land Use	16
	5.3	New Zealand Geotechnical Database	16

5.4	Geological Setting	16
5.5	Site Observations	16
5.6	General	17
5.7	Adopted Subsurface Conditions	18
5.8	Groundwater Model	18
5.9	Loading	18
5.10	Supports	19
5.11	Slope Stability Results	19
5.12	Recommendations	19
6	LIMITATIONS	21
APPEND	ICES	22
APPEND	IX A - PROPOSED SITE LAYOUT PLAN	23
APPEND	IX B - SOIL INVESTIGATION BORE LOGS	24
APPEND	IX C - PERCOLATION TEST	29
APPEND	IX D - UNDERLYING GEOLOGY	30
APPEND	IX E - PROPOSED STORMWATER & WASTEWATER LAYOUT PLANS	31
APPEND	IX F - CALCULATION SHEETS	32
APPEND	IX G - KEY DO'S & DON'TS FOR THE HOUSEHOLDER	33
APPEND	IX H - MAINTENANCE, OPERATION AND PLANTING RECOMMENDATIONS	34
APPEND	IX I – LIQUEFACTION ASSESSMENT RESULTS	35
APPEND	IX J – SLOPE STABILITY MODELS	36
EXISTIN	G SLOPE (MODELLED IN 2020)	37

Page 4 of 47

1 INTRODUCTION

1.1 Overview

TITUS CIVIL Consulting Engineers has been engaged by Martin Cameron to perform an engineering assessment and design report for a storey timber-framed building at Lot 2 136 State Highway 26.

The report includes the following.

- Section 2: Site and Soils Assessment.
- Section 3: Stormwater Assessment and Design.
- Section 4: Wastewater Assessment and Design.
- Section 5: Slope Stability Assessment.

The assessments and design meet the requirements of the local authority, Hamilton City Council, and the following technical documents.

- The building code,
- NZS3604:2011,
- District Plan,
- Any current ICMP,
- Waikato Regional Council Plan, and
- AS/NZS 1547/2012

1.2 Site Details

The site is currently a newly subdivided lifestyle block with a large gully at the back of the section. The site is bordered by a gully system to the east, a field to the north (used for cultivation), and a residential house and garage to the south / south west. The area near the proposed foundation is gently sloping to the north. The location of the house is close to the top of a slope joining the gully system to the east.

The large gully system is approximately 3km upstream from where it enters the Waikato River.

Figure 1 shows a photo of the proposed dwelling location.

Figure 1: Site Photo

1.3 Planning Requirements

The following requirements based on the Regional Council Plan, Consent Notices and Subdivisional Reports are noted, and have been duly considered in the proposed recommendations.

The following is taken from the resource consent from HCC:

- (2)(7) Any contaminated soil is to be removed under controlled conditions to a licensed waste facility or landfill for disposal in accordance with the RAP, and with the requirements of the disposal site and the relevant authority. Receipts of transport and disposal are required to be provided in the Site Validation Report.
- An area of lead contaminated ground from near the previously existing cow shed has been removed and disposed of on the day of the site investigation.

The following is taken from the Geotechnical report for lot 4 of the same subdivision and gives a setback of 7.5m for a dwelling along the same gully slope that lot 2 is on:

Slope Stability Assessment

 The conducted slope stability assessment indicates a development building setback of at least 7.5m from the crest of the slope. Building within the setback zone is feasible but specifically designed foundations (such as piles) will be required.

2 SITE AND SOILS ASSESSMENT

2.1 Assessment Parameters

This section details findings of a site and soils assessment in accordance with NZS3604:2011 cl. 3.1.3.1 Determination of 'Good Ground'. The investigation is in relation to the construction of a new single storey timber-framed building.

In particular the investigation focussed on assessing:

- The bearing capacity of the soil in accordance with NZBC B1 (New Zealand Building Code),
- Checking for organic and peat soils,
- Checking for soft and very soft clays containing gravel or other hard material and,
- Checking for uncontrolled fill.

NZBC requires 5 blows per 100mm down to a depth of twice the footing width or 3 blows per 100mm at greater depths to establish good ground in terms of bearing capacity of soils.

Foundations outside of the scope of NZBC or proprietary specifications require *specific* engineering design (SED).

The proposed building has a floor area of approx. 250m² and various foundation options are being considered.

2.2 Soil Investigation

The site assessment conducted on 12th of May 2020 included the following:

- General site walkover
- Hand Auger Tests: 4
- Scala Penetrometer Tests: 4
- Shear Vane Tests: 7
- Soakage Test: 1

Test locations are shown in Appendix A.

Topsoil was found at a depth of 200mm on site in borehole 5 but not in boreholes 1 to 4 as they were located beneath the removed cowshed foundations. Underlying soils consist predominantly of sand. Overall, the boreholes showed interbedded layers of sand and silt with little correlation between boreholes.

No soft clays were found on the site (kPa < 25).

Organic material was found in borehole 2 under the propsed dwelling location. The material is suspected to be a dump site associated with the previously existing cow shed. This material was only found in an isolated area and was removed on the day of inspection of the removal of contaminated soil from the site.

Soakage testing yielded a raw soakage rate of 900mm/hr. An appropriate factor of safety shall be applied before use in design calculations.

The water table was not found in any borehole to a depth of 2.0m. The water table was found at 13.0m in the CPTs on the adjacent lot.

2.3 Preliminary Liquefaction Assessment

2.3.1 Geological Setting

According to GNS (GNS Science, 2019), the underlying geology of the site is classified as (Late Pleistocene) river deposits (Hinuera Formation), as shown in Appendix D. This is described as cross-bedded pumice sand, silt, and gravel with interbedded peat. The Late Pleistocene sediments are approximately up to 27,000 years old. The site sits on a geological boundary between Hinuera Formation and Holocene sediments. This boundary will sit somewhere on the slope where eroded sediments have been deposited. Given the nearby gully and the free draining nature of the Hinuera Formation it is assumed that the long-term water table is located near the base of the gully.

2.3.2 Seismic Parameters

Table 1 below summarises the seismic parameters adopted for the site:

Ground Acceleration (SLS)		Ground Acceleration	Ground Acceleration (ULS)	
Hamilton		Hamilton		
Class D		Class D		
1/25		1/500		
f	1.00	f	1.00	
R _u	0.25	R _u	1	
C _{0,1000}	0.28	C _{0,1000}	0.28	
M _{eff}	-	M _{eff}	5.9	
PGA, a _{max} (g)	0.05	PGA, a _{max} (g)	0.22	

 Table 1: Seismic parameters (NZTA Bridge Manual, Third Edition)

The site is located within the Waikato Basin which is generally known for deep sedimentary soils and deep basement rock. Development of a preliminary model of the fundamental site period (T0) across the Waikato Basin has shown that most places within the Waikato Basin have fundamental periods longer than 0.6s and hence should be categorised as Site Class D. (Jeong & Wotherspoon, 2019)

Therefore, Subsoil Class D – Deep or Soft Soil (NZS 1170.5:2004) may be adopted for this site.

2.3.3 Liquefaction Susceptibility

A comparison between the ideal conditions for liquefaction occurrence and conditions found for each proposed lot assessed is shown in Table 2 below;

Table 2: Conditions for liquefaction occurrence

Soil conditions considered susceptible to liquefaction occurrence	Site
Holocene to Late Pleistocene sediments	Yes
Cohesionless	Yes
Non-cohesive silt to medium to fine sand	Yes*
Loosely packed	Yes*
Shallow water table (<4m)	No
Thick non-liquefiable crust at the ground surface	Unlikely

*Limited layers

Due to underlying geology and according to Hamilton City Liquefaction Report prepared by Tonkin & Taylor it is indicated that liquefaction damage is possible. Due to the depth to water table and the free draining nature of the gully systems around Hamilton, liquefaction damage at the site is considered unlikely and no mitigation measures are recommended.

Note: In order to determine if any layers are susceptible to liquefaction below the base of the slope which may affect slope stability a detailed liquefaction assessment of the CPTs using CLIQ has been carried out, refer to Appendix I.

2.4 Recommendations

The following foundations options are suitable given the soil conditions on site, however, are subject to confirmation of the specific requirements of the recommended foundation, the slope on site and any filling proposed for the site.

2.4.1 SED Piled Foundation

An SED Piled Foundation shall be designed as summarised below and as per the slope stability assessment (in Section 5).

SED Piled Raft for House			
Minimum depth of excavation for sand pad to good ground	1200mm below original proposed ground level		
Minimum Pile Depth	5.0m		
Maximum Out-of-Plane Spacing	2.0m		
Backfill material	Sand (Granular fill (brown rock) below 500mm)		

Table 3: Foundation Parameters

	8 blows/300mm (Scala penetrometer)
Compaction standard	o blows/soonini (scala penetrometer)
	270kPa
Inspections required	1 - Sub grade prior to back fill
	2 - Compacted and finished sand pad
Foundation type	SED Piled raft
Commente	The foundation designer shall ensure the
Comments	foundation is appropriate as per Section 5.
Piles for	r Concrete Foundation
Piles for Minimum Pile Depth	5.0m
Minimum Pile Depth	5.0m
Minimum Pile Depth Maximum Out-of-Plane Spacing	5.0m 2.0m
Minimum Pile Depth Maximum Out-of-Plane Spacing Inspections required	5.0m 2.0m Pile driving / base of bored pile holes as applicable

The piling and foundations shall be inspected in accordance with council and building code requriements.

Page 10 of 47

3 STORMWATER ASSESSMENT AND DESIGN

3.1 Design Parameters

- Lot Size: 1,413m²
- Proposed roof area: approx. 250m²
- Design storms:
 - Primary: 10yr ARI
 - Secondary: 100yr ARI
- Rainfall data: Ruakura Rainfall data
- Climate change: 2.1 degrees warming
- Soakage rate: 900mm/hr (tested 12th of May 2020) adopted 225mm/hr. Refer to Appendix C for results.
- Water table was determined to be 13.0m below the ground surface in the CPT logs from the neighbouring lot 4.

Figure 2 below summarises the catchment characteristics that have been adopted.

TANK DESIGN CALCULA	TIONS AND	OUTPUTS			
				Existing Input	/ Select
Rainfall Location Even		Event	ARI	Proposed An	swer
Hamilton		Primary	10		
		Secondary	100	Existing Catchment Characteristi	cs, Time of
				Concentration (Tc)	
Catchment	Area	(m2)	c	Average grassed surface	0.045
Catchinent	Existing	Proposed		Length of flow path (m)	20.00
Grass	280		0.30	Slope (%)	3.00
Roof		280	0.95	Tc (min)	10.49
Concrete			0.90		
Gravel			0.70	Existing Q(max) (I/s)	2.12
Other			-	(interpolated wrt Tc)	2.12
TOTAL	280	280		Proposed Q(max) (I/s)	7.89
Composite C	0.3	0.95			7.89
Adopted C	0.30	0.95			

Figure 2: Stormwater Design Parameters

3.1.1 Attenuation Tank

It is proposed that the roof runoff from the design storm is attenuated in a rainwater tank and released via a 35mm orifice to match the existing flow rate. The minimum detention storage is 5,000L. The proposed tank size is 1 X 25,000L and may be located at the Client's discretion given that Council's requirements are met. The orifice should be located 560mm below the invert of the overflow pipe.

The rainwater tank outlet and overflow shall discharge to the level spreader at the base of the slope.

Subsurface water drains shall be sized in accordance with Acceptable Solutions and Verification Methods for New Zealand Building Code Clause E1 Surface Water (E1/AS1) Section 3.

3.1.2 Soakage from other impermeable surfaces

The stormwater runoff from the impermeable driveway has been designed to be routed to the nearby soakage pit. The soakage pit is to be 900mm in diameter and a minimum of 1.8m deep. Overflow from this device shall flow to the level spreader at the base of the gully.

3.1.3 Secondary flow path

The stormwater runoff from impermeable surfaces has been designed to be routed via the rainwater tank and soakage pit. The overflow from these devices shall discharge to the bottom of the nearby gully as far as possible from the slope beneath the proposed dwelling.

3.2 Operation and maintenance

It is recommended that first flush devices are installed upstream of the rainwater tank and that these devices are regularly checked and cleaned along with the catchpit filters and overflow pipes.

3.3 Construction Monitoring

TITUS CIVIL Consulting Engineers have been engaged to perform inspections of the storm water system during construction.

4 WASTEWATER ASSESSMENT AND DESIGN

4.1 Design Parameters

The following design parameters have been adopted to design the system to meet the requirements:

- Water supply to the property will be reticulated community supply
- 5-bedroom home
- 8 people occupancy
- 145L/day/person
- Peak daily flow 1,160L/day
- The soil at the site is classified as a soil category 2 Sandy loams (AS/NZS 1547:2012).
- Council planning maps show no flooding risk for the site.

4.1.1 Water Use Requirements

The following water use requirements are noted:

- Design information of 145L/day/person is based of AS/NZS 1547:2012. This requires the proposed building to have **FULL** water reduction fixtures.
- standard water reduction fixtures include reduced flush 6/3 litre water closets, shower flow restrictors, aerator faucets, front-load washing machines and flow/pressure control valves on all water-use outlets (9L/min maximum). Baths should also be discouraged.

4.2 Treatment Design

4.2.1 Secondary Treatment System

Both primary and secondary treatment will be provided by an Ecocycle Fusion Treatment Plant (or similar). This system includes a 4,500-litre chamber for primary treatment, and a 1,500-litre treatment unit chamber. It has an emergency storage of 2,000 litres. It can treat up to 1,600 litres of wastewater per day. This system has been tested by the On-site Effluent Treatment National Testing Programme (OSET) based at the Rotorua/ BOP wastewater plant and complies with the NZ Standards for on-site wastewater management and Waikato Regional Council conditions for rule 3.5.7.6 of the Waikato Regional Plan.

The proposed system has been designed as per the table below.

Table 4: System Specifications

Min Septic Tank (L)	24hr settling volume (L)	Scum and sludge capacity (L)	Max Pump out frequency (Yrs)
4500 1160		3200	5
DLR recommended (mm/d)	DLR adopted (mm/d)	Daily Flow (L/day)	Basal area (m ²)
10-25	35	1160	34

The Ecocycle Fusion Treatment Plant is an environmentally sustainable recirculating packed bed bio filter for aerobic secondary treatment of wastewater. The system performs significantly higher than the standard required by AS/NZS1547:2012.

The system has been tested and provides for the following:

- BOD₅ <10g/m³ average
- Suspended solids <10g/m³ average
- 10:10 Standard

Attached to this report is the following documentation:

- Certification confirming that the system has undergone testing to comply with the NZ Standards for on-site wastewater management and the Waikato Regional Plan rule 3.5.7.6.
- Manufacturer's technical specifications for the tank and treatment plant.
- System warranty.
- Owner's operation and maintenance guidelines.
- Planting guideline.

4.2.2 Wastewater Disposal

Primary and secondary treatment will be achieved using a septic tank and a treatment facility with disposal through LPED Beds. The design is outlined in the Table below.

Table 5: Disposal Method Specifications

Disposal Method	Beds						
Specification	Beus						
Number of beds	2						
Length (m)	10						
Width (m)	1.8						
Spacing (m)	1						
Basal area (m ²)	34						
Total area (m²)	43 + 43 Reserve Area						

Appendix F provides an indicative layout of the proposed wastewater system and typical details.

4.3 Maintenance, Operation and Planting

Maintenance and Operation of the system shall be as per the manufacturers specifications, AS/NZS 1547:2012 and the recommendations contained in the appendices.

Planting shall be as per AS/NZS 1547:2012 and the recommendations contained in the appendices.

4.4 Inspections

TITUS CIVIL Consulting Engineers should be engaged to inspect the installation of the Septic Treatment and Land Disposal Systems prior to any excavations and pipe installations being buried.

Page 15 of 47

5 SLOPE STABILITY ASSESSMENT

5.1 Assessment parameters

This slope stability assessment will consider the stability of the existing slope as well as the proposed plans with the basement cut into the slope, thus reducing the effective height of the slope. The assessment also considers strength loss in liquefiable layers following a ULS event.

The slope has been modelled using SLIDE 2018 software under several loading and ground water conditions. The report details the results of the assessment under the following loading conditions:

- Gravity (drained)
- Gravity (drained, elevated water table)
- SLS (Serviceability Limit State) (drained)
- ULS (Ultimate Limit State) (drained)
- Post Liquefied Conditions

The slope has been modelled in the three following scenarios:

- Existing conditions (prior to any earthworks undertaken on site)
- Proposed cutdown and dwelling
- Proposed cutdown and dwelling with strength loss layers due to liquefaction caused by a ULS earthquake.

Proposed slope cutting and dwelling foundation has been modelled to the specifications outlined in the latest engineering plans by Don Crowie Draughting & Design Services. Foundation Pile depths have been modelled to required depths to be founded below predicted failure arcs and to provide overall stability.

5.2 Historic Land Use

The site has previously been used as a milking shed that existed from pre-1938 until recent removal following subdivision of the land.

5.3 New Zealand Geotechnical Database

The New Zealand Geotechnical database has no entries close to the site. CPT logs from lot 4 of the subdivision have been used to determine the geological parameters in the slope model. The locations of the CPT logs are shown in Appendix A.

5.4 Geological Setting

Refer to section 2.3.1 Geological Setting.

5.5 Site Observations

The slope runs across the site from north to south. The slope separates flat (<5%) land above it to the west from the vegetated gully below it. Vegetation on the slope itself has been cleared in preparation for specialised planting. There were no outcrops of rock found on site. This is consistent with the geology of the Hamilton basin which has deep soils and deep bedrock.

The slope ranges in steepness from 7 degrees to a maximum of 40 degrees with an average slope of 27 degrees or 51% incline. Two large poplar trees are present at the top of the slope. Figure 3 below shows the slope below the proposed dwelling location. The loose material seen on the slope in Figure 3 is sand from the removal of the milking shed foundation. No evidence of slope instability was seen during the site inspection.

Figure 3: Photo of slope from below proposed dwelling location.

5.6 General

Slope stability modelling has been undertaken using Slide 2018 by RocScience using the Morgenstern-Price method to analyse the slope. The cross section of the slope was based on contour data taken from HCC 3 waters online mapping service. Location of the slope modelled is attached in Appendix A and Slope models are attached in Appendix H.

The factors of safety (FOS) as summarised in Table 7 has been adopted as appropriate for the loading conditions:

Table 7: FOS Standard Requirements

Modelled Loading Condition	FOS Required
Gravity Conditions	1.5
Gravity Conditions (elevated water table)	1.3
Seismic SLS (Serviceability Limit State)	1.45
Seismic ULS (Ultimate Limit State)	1.05
Post Liquefaction	1.1

5.7 Adopted Subsurface Conditions

The stratigraphy as determined by TITUS Consulting Engineers with reference to CPT logs for lot 4 undertaken by OPUS, has been separated into the different materials displayed in the Table below.

Material Name	Color	Unit Weight (kN/m3)	Sat. Unit Weight (kN/m3)	Strength Type	Cohesion (kPa)	Phi (deg)	Vertical Strength Ratio	Minimum Shear Strength (kPa)	Water Surface	Hu Type	Hu
Coarse Sands		17.5	20.7	Mohr- Coulomb	2	36			Water Surface	Automatically Calculated	
MediumSands		17	20.7	Mohr- Coulomb	2	34				Automatically Calculated	
Silty Sands and Sandy Silts		17	19.7	Mohr- Coulomb	6	32			Water Surface	Automatically Calculated	
Liquefied Layer		17		Vertical Stress Ratio			0.15	5	Water Surface	Custom	0
Concrete Slab	\mathbb{Z}	25		Mohr- Coulomb	700	0			Water Surface	Custom	1

Table 8: Material characteristics

5.8 Groundwater Model

The water table has been modelled at 12.0m below the ground surface at the top of the slope and 0.3m below the surface at the bottom except in the elevated water table conditions.

The elevated water table has been modelled at 8m below the ground surface at the top of the slope and at the ground surface at the bottom of the slope as the gully is expected to flood during a large storm event.

5.9 Loading

Loadings applied to each model are shown in the Table below. The location of loadings may be found in Appendix H.

Surcharge	Load	Load Type
Proposed Dwelling	25 kN/m ²	Uniformly Distributed
Deck	5 kN/m ²	Uniformly Distributed

5.10 Supports

The properties of supports modelled are displayed in the Table below.

Table 10: Support properties

Туре	Out of plane Spacing	Shear Strength - Static	Shear Strength - Transient	Depth
200 mm SED High Density Timber Pile (with 8mm/m taper)	2.0 m	40 kN	67 kN	3.6 and 5.0m as applicable

5.11 Slope Stability Results

Under existing conditions, the model shows failure arcs below the required FOS up to 11.8m back from the crest of the slope during ULS and SLS conditions. The gravity condition had failure arcs below the required FOS up to 1.4m back from the crest of the slope.

Under the proposed slope cutting and dwelling foundation scenario the gravity and elevated water scenarios meet the required FOS required. The FOS reached for the dwelling under the SLS condition was 1.55 and the FOS reached under ULS conditions was 1.11. Both of these meet the required FOS for their conditions.

The strength loss scenario gave a FOS of 1.002 under ULS conditions.

Table 11 below shows the minimum FOS achieved for the modelled foundation under various seismic loading conditions as specified in Section 5.6 of this report.

Modelled Loading Condition	Minimum Global FOS (Existing)	FOS Reached (Proposed with house and piling)
Gravity Conditions	1.42	>1.5
Gravity Conditions (elevated water table)	1.42	>1.3
Seismic SLS (Serviceability Limit State)	1.28	>1.45
Seismic ULS (Ultimate Limit State)	0.93	>1.05
Liquefied Condition	>1.2	>1.1

Table 11: Worst Case failure plane FOS

5.12 Recommendations

It is proposed the site is cut down 3.0m as per the site development plans.

To improve stability of the slope the following recommendations have been made:

TITUS

- The dwelling should be setback at least 5.5m from the new top of the slope after cutting down.
- The modelled foundation is based on 200mm diameter piles as per the Engineering Plans with a minimum embedment depth of 5.0m and 3.6m as modelled.
- The rest of the foundation piles will be designed by a suitably qualified engineer to be in accordance with suitable depths as outlined in section 2.4.1 of this report.
- Appropriate vegetation should be planted on the slope as to improve stability and avoid erosion.
- No overland flow paths should be directed onto or towards the slope.
- No undercutting of the slope should be undertaken without due consideration to slope stability.

Page 20 of 47

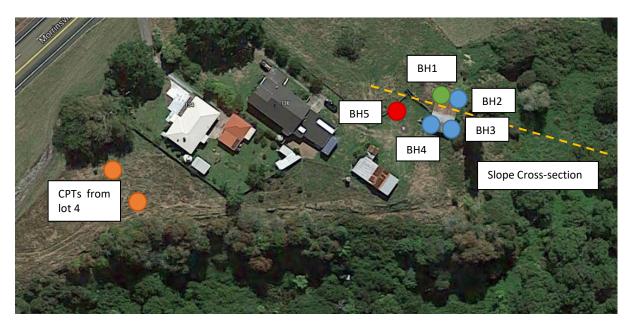
6 LIMITATIONS

This report does not assess risk of contamination of soils. This report does not provide a foundation design.

Testing portrays a limited percentage of ground conditions at Lot 2 136 State Highway 26 and may not be representative of all soils present on site.

Assessment of the water table depth and moisture content is subject to seasonal variation.

During excavation and construction, the site should be examined by a suitably qualified engineer in order to assess whether the exposed subsoils are compatible with the inferred soil conditions on which the recommendations have been based and potentially further investigation and design rationalisation may be required. Flooding and FFL requirements has not been assessed as part of this stormwater design.


This report has been prepared solely for Martin Cameron, its professional advisors, and local authorities in relation to Lot 2 136 State Highway 26. No liability is accepted for its use for any other purpose or by any other entity. Reliance by other parties or future owners of the property on the information or opinions contained in the report shall be verified with TITUS CIVIL Consulting Engineers.

Should you be in any doubt as to the recommendations of this report it is essential that you discuss these issues with TITUS CIVIL Consulting Engineers prior to proceeding with any work based on this report.

APPENDICES

APPENDIX A - Proposed Site Layout Plan

APPENDIX B - Soil Investigation Bore Logs

ddress:	CC	DNSULTING Lot 2 State	ENGINEER e Highwa	S						BH1		
Date: Testers:		12/05/2020 RM							Project N	<u>0</u> :	11122	
Water Table:	Depth (mm):	Geology:	Graphic Log:	Material Description:			1 00mm 10 1	ı: 15	Shea Undrained:	r Strength	(kPa): Sensitivit	
Not Found	100 200 300 300 500 600 700 600 700 800 700 1000 1000 1100 1200 1100 1200 1100 1100 1200 1100 1100 1100 1200 11000 1100 100 1000 1000 1000 1000 1000 1000 1000 1000 1000 10	Hinuera Formation		Medium SAND, yellowish orange and brown, poorly graded, moist, very loose SILT with some sand, yellowish grey, low plasticity, moist, stiff SILT with some sand, light yellowish brown, low plasticity, moist, stiff				0 0 0 3 2 3 2 3 2 3 2 4 6 4 4 5 4 6 5 - - - - - - - - - - - - -	91 91	53	1.7	

т	17	ΓL				L	og:		
Address	cc	NSULTING	ENGINEER e Highway	S				BH2	
Testers:		12/05/202 RM	0				Project N	⊵: 1	1122
Water Table:	Depth (mm):	Geology:	Graphic Log:	Material Description:	ows /1	n: 15	Shea Undrained:	a r Strength (Remoulded:	(kPa): Sensitivity:
Not Found	100 200 200 300 400 500 600 700 600 700 1000 1100 100	Hinuera Formation		Medium SAND, yellowish brown, poorly graded, moist, very loose Black, organics Medium SAND, yellowish brown, poorly graded, moist, very loose to loose SILT, grey, low plasticity, moist, stiff Medium to coarse SAND with some silt, brown, well graded, moist, medium dense		0 0 0 0 0 1 2 1 3 2 2 3 5 5 4 5 4 5	91	61	1.5
	F2100								

TITUS CIVIL

office@tituscivil.co.nz

+64(0)7 242 0017

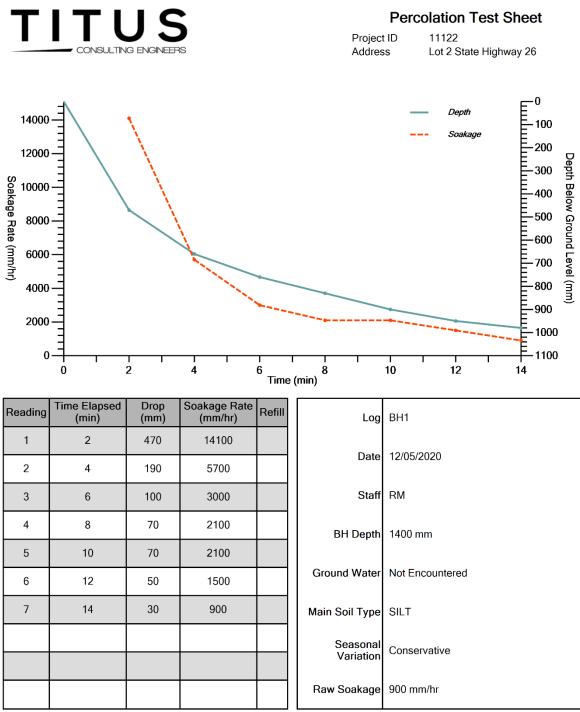
т	17	ΓL					L	og:		
Address	cc	DNSULTING	ENGINEER e Highway	S					BH3	
Date: Testers:		12/05/202 RM	0					Project N	⊵: 1	1122
Water Table:	Depth (mm):	Geology:	Graphic Log:	Material Description:	Bl	1 00mm 10 1	n: 15	Shea Undrained:	r Strength Remoulded:	(kPa): Sensitivity:
Not Found	100 200 200 300 400 - 500 - - 500 - 50 - 500 - 500 - 500 - 500 - 500 - 5	Hinuera Formation		Fine SAND with minor silt, brown, well graded, moist, very loose SILT, brownish grey, low plasticity, moist, stiff Medium SAND, yellowish brown, poorly graded, moist, loose to medium dense Silty fine SAND, light brown, well graded, moist, loose SILT with some sand, light yellowish brown, low plasticity, moist, very stiff Medium to coarse SAND, brownish orange, well graded, moist, medium dense			0 0 2 1 3 2 5 3 3 5 5 8 5 6 0 0 0 2 1 1 3 2 5 8 5 5 6 0 0 0 0 0 0 0 0 0 0 0 0 0	91	38	2.4
TITUS CIVIL	-2100			office@tituscivil.co.nz					+64	(0)7 242 0017

т	17	ΓL					L	og:		
Address		NSULTING	ENGINEER e Highwa	S					BH4	
Date: Testers:		12/05/202 RM	0					Project N	≌: 1	1122
Water Table:	Depth (mm):	Geology:	Graphic Log:	Material Description:	BI	ows /1	n: 15	Shea Undrained:	r Strength (kPa): Sensitivity:
Not Found	100 200 300 400 500 600 600 700 800 900 1000 1100 10	Hinuera Formation		Medium SAND, brownish orange, poorly graded, moist, very loose Sandy SILT, yellowish brown, low plasticity, moist, stiff Silty medium to coarse SAND, dark brownish orange, well graded, moist, very loose to medium dense Silty SAND, greyish brown, well graded, moist, loose Coarse SAND, yellowish brown, poorly graded, moist, medium dense to dense			0 0 1 2 1 2 3 3 2 1 3 4 5 4 4 5 8 	84	38	2.2
	F2100									

TITUS CIVIL

office@tituscivil.co.nz

+64(0)7 242 0017


т	17	L						L	og:		
Address	co	NSULTING	ENGINEER e Highway	S						BH5	
Date: Testers:		12/05/202 RM	0						Project N	≌: 1	1122
Water Table:	Depth (mm):	Geology:	Graphic Log:	Material Description:	Blo 5	ws /1	00m ı	m : 15	Shea Undrained:	r Strength ((kPa): Sensitivity:
	-100 -200	Undefined	4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Topsoil Medium SAND, yellowish brown,							
	-300 -400 -500			poorly graded, moist							
	-600 -700 -800 -900			SILT, light brown, low plasticity, moist							
Not Found	- 1000 - 1100 - 1200 - 1300	Hinuera Formation		Fine to medium SAND, brownish orange, well graded, moist							
	1400 1400 1500 1600 1600 1700 1800 1900 2000			Medium to coarse SAND, brown, well graded, moist							
	2100										

TITUS CIVIL

office@tituscivil.co.nz

+64(0)7 242 0017

APPENDIX C - Percolation Test

Titus Consulting Engineers

TITUS CONSULTING ENGENEERS

Office@tituscivil.co.nz

+64 (0)7 242 0017

APPENDIX D - Underlying Geology

APPENDIX E - Proposed Stormwater & Wastewater Layout Plans

Attached separately

APPENDIX F - Calculation Sheets

TANK DESIGN CALCULA	TIONS AND	OUTPUTS								
					Exis	ting	Input /	Select		
Rainfall Locati	ion	Event	ARI		Prop	osed	Ans	wer		
Hamilton		Primary	10							
Harrinton		Secondary	100		Existing C	atchment Cl	s, Time of			
						Concentr	ation (Tc)			
Catchment		(m2)	с		Average gra	ssed surface	9	0.045		
caterinent	Existing	Proposed			Length of fl	ow path (m)		20.00		
Grass	280		0.30		Slope (%)			3.00		
Roof		280	0.95			Tc (min)		10.49		
Concrete			0.90							
Gravel			0.70		Exist	ting Q(max)	(I/s)	2.12		
Other			-		(inte	erpolated wr	rt Tc)	2.12		
TOTAL	280	280			Pron	osed Q(max) (1/s)	7.89		
Composite C	0.3	0.95			Пор		, (1, 3)	7.05		
Adopted C	0.30	0.95								
ARI	10									
Duration(min)	10	20	30	60	120	360	720	1440	2880	4320
Delta t (min)	10	10	30	60	240	360	720	1440	1440	
Delta Q (l/s)	-0.5	-0.3	-0.4	-0.4	-0.3	-0.1	-0.1	0.0	0.0	
Intensity	91.9	69.1	57.1	38.7	23.6	10.6	6.7	4.1	2.5	1.8
Intensity CC	107.2	80.3	66.1	44.7	27.1	12.1	7.6	4.7	2.8	2.0
Existing Q (I/s)	2.1	1.6	1.3	0.9	0.6	0.2	0.2	0.1	0.1	0.0
Proposed Q (I/s)	7.9	5.9	4.9	3.3	2.0	0.9	0.6	0.3	0.2	0.1
ARI	10									
Duration	10m	20m	30m	60m	2h	6h	12h	24h	48h	72h
Depth EX	16.2	24.5	29.6	36.4	42.7	57.3	77.5	93.3	113.4	121.1
Depth CC	17.9	26.8	33.1	44.7	54.3	72.3	91.3	112.1	135.2	142.3
Existing Vol m3	1.4	2.1	2.5	3.1	3.6	4.8	6.5	7.8	9.5	10.2
Proposed Vol m3	4.8	7.1	8.8	11.9	14.4	19.2	24.3	29.8	36.0	37.9
Effective Tank Dia (m)	3.4	effective h		0.56	Sharp					
ARI	10.0	orifice size		36.2	Cd	0.62				
Duration	10m	20m	30m	60m	2h	6h	12h	24h	48h	72h
Volume in	4.8	7.1	8.8	11.9	14.4	19.2	24.3	29.8	36.0	37.9
Volume out	1.3	2.5	3.8	7.6	15.3	45.8	91.5	183.0	366.0	549.0
Volume store	3.5	4.6	5.0	4.3	-0.8	-26.5	-67.2	-153.2	-330.1	-511.2
Tank Calc										
Height	2.80		Capacities							
Volume (m3)	25.00		Run off reus	. /	20.0					
Volume MAX (m3)	4.99		Detention (m3)	5.0					
Diameter (m)	3.37									

APPENDIX G - Key Do's & Don'ts for the Householder

DO

TITUS

- Minimise your water use.
- Minimise the length of showers.
- Use showers in preference to baths.
- Use bio-degradable soaps and cleaners
- Check all your cleaning products to see if they are suitable for septic tanks.
- Minimise use of strong toilet cleaners.
- Scrape all plates and dishes to remove as much fat and grease as possible. Clean with paper towels and place in the rubbish.
- Report/fix all leaking taps as soon as possible.
- Use phosphate free/low phosphorus based laundry detergents.

DO NOT

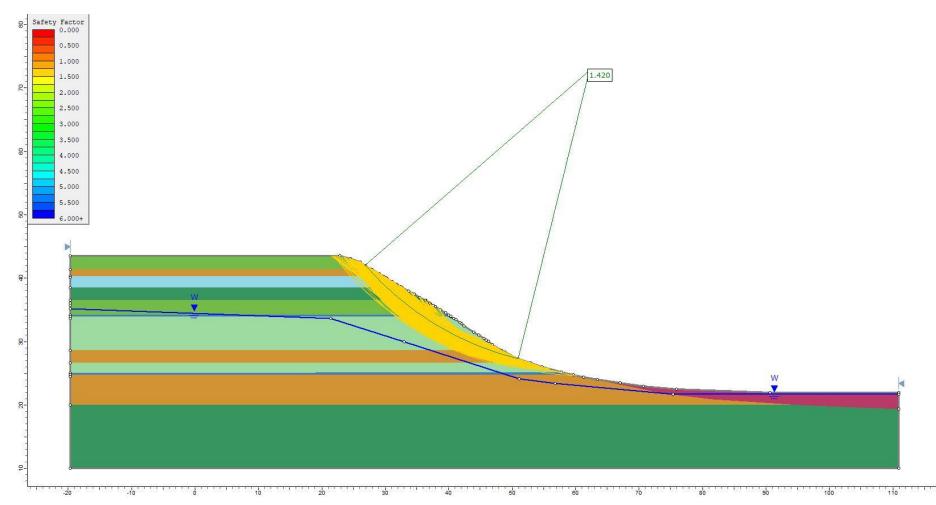
- Don't pour any toxic/strong chemicals (paint, oil, grease, paint thinners, pesticides down any drains).
- Don't flush any products down the toilet, other than standard toilet paper.
- Don't discard any drugs down the sink or toilet.
- Don't use strong cleaners.
- Don't tip chlorine cleaners or disinfectant based products into the system.
- Don't use huge amounts of cleaners.
- Don't use chemical drain cleaning products.
- Don't do all your laundry on one day.
- Don't install in-sink garbage grinders. If a grinder exists, don't discharge high volumes of scraps, especially carbohydrates or fats/oils down it.
- Don't put coffee grounds down the sink.

APPENDIX H - Maintenance, Operation and Planting Recommendations

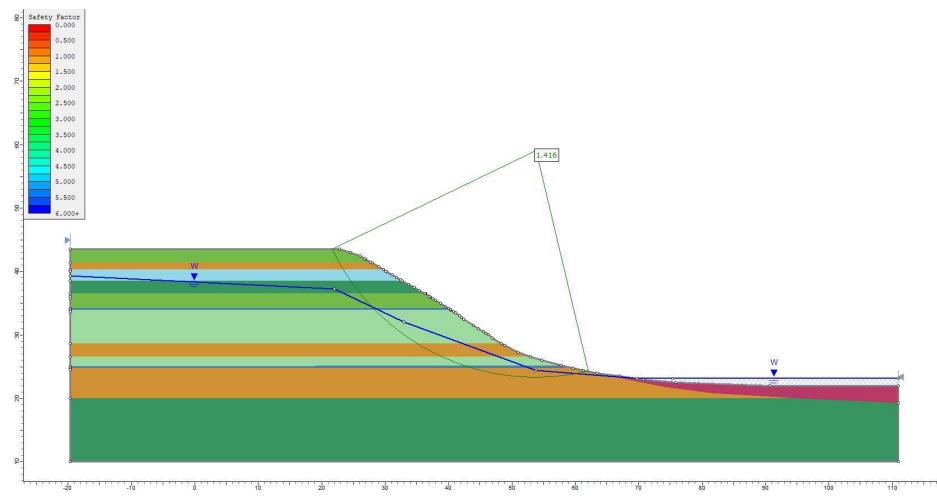
Attached separately

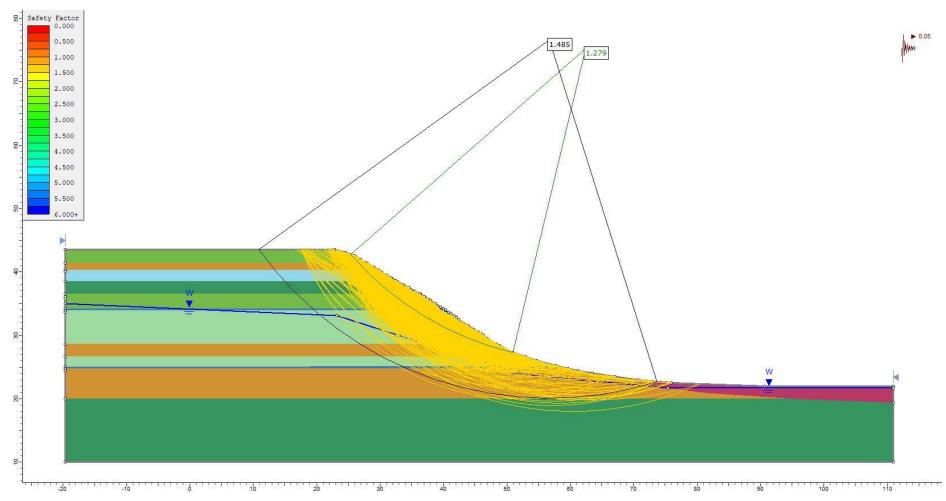
APPENDIX I – Liquefaction Assessment Results

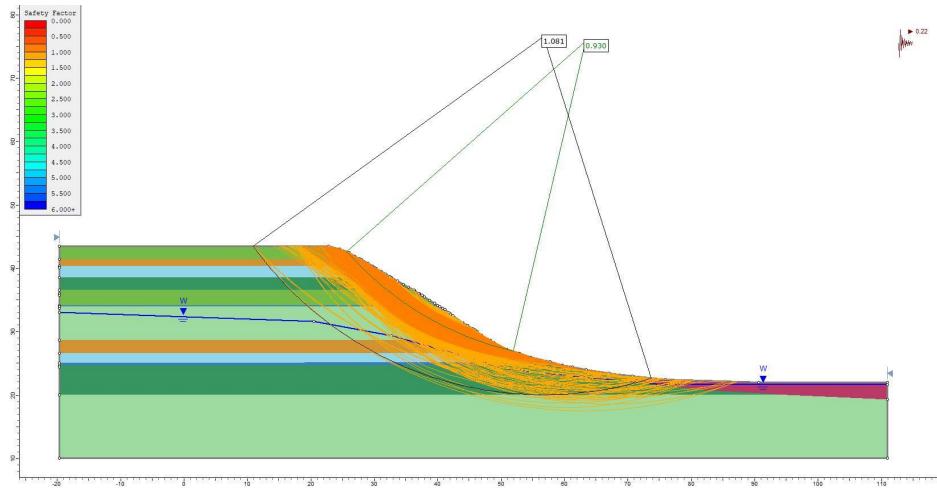
Attached separately

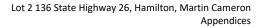

APPENDIX J – Slope Stability Models

EXISTING SLOPE (Modelled in 2020)

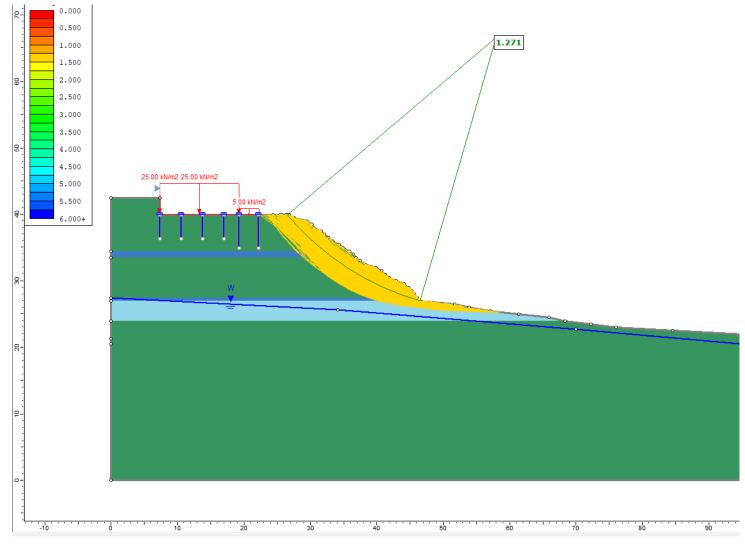

Material Name	Color	Unit Weight (kN/m3)	Sat. Unit Weight (kN/m3)	Strength Type	Cohesion (kPa)	Phi (deg)	Cohesion Type	Water Surface	Ни Туре	Ru
Topsoil		17	19.7	Mohr-Coulomb	2	28		Water Surface	Automatically Calculated	
Coarse Dense Sands		18	20.7	Mohr-Coulomb	2	40		Water Surface	Automatically Calculated	
Coarse Sands		18	20.7	Mohr-Coulomb	2	38		Water Surface	Automatically Calculated	
Medium to Coarse Sands		18	20.7	Mohr-Coulomb	2	37		Water Surface	Automatically Calculated	
Medium Sands		18	20.7	Mohr-Coulomb	2	36		Water Surface	Automatically Calculated	
Medium to Fine Sands		19	21	Mohr-Coulomb	2	35		Water Surface	Automatically Calculated	
Fine Silts		17	19.7	Mohr-Coulomb	з	32		Water Surface	Automatically Calculated	
Holocene Sediments		13	14	Mohr-Coulomb	0	32		Water Surface	Automatically Calculated	
Free Draining hardfill		18	20.7	Mohr-Coulomb	2	37		Water Surface	Automatically Calculated	
Concrete Retaining Wall		25		Undrained	650		Constant	None		0
Concrete Floor		24		Mohr-Coulomb	30	40		None		0
Liquefied Layer		18	20.7	Undrained	5		Constant	Water Surface	Automatically Calculated	


SLIDE 2018 model – Existing Site – Gravity Conditions – FOS required: 1.5

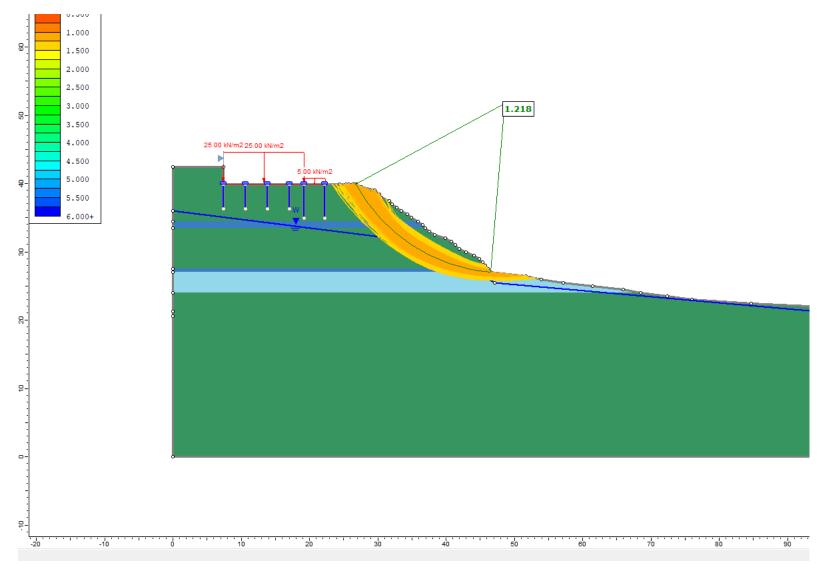

SLIDE 2018 model – Existing Site – Gravity Conditions –Elevated water table - FOS required: 1.3

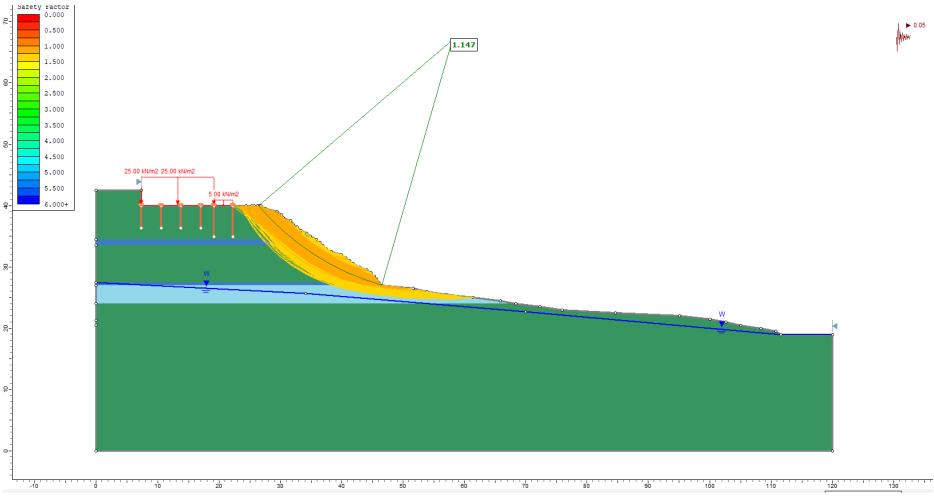


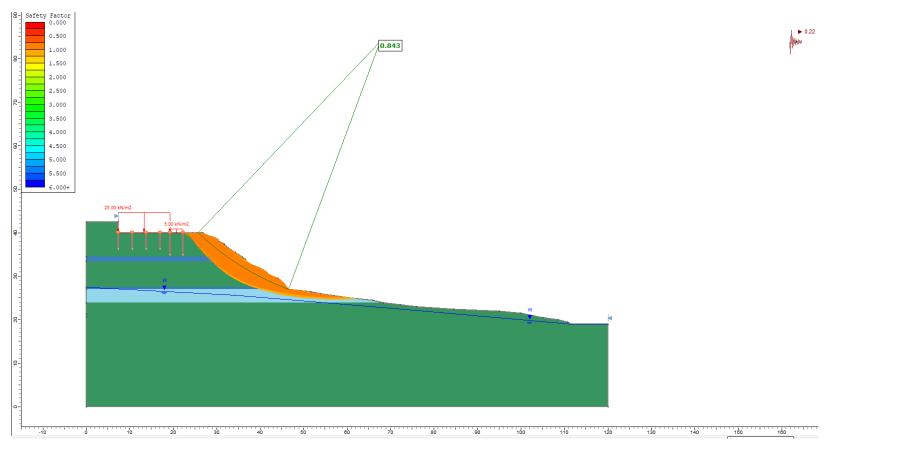
SLIDE 2018 model – Existing Site - SLS (Serviceability Limit State) – FOS required: 1.5

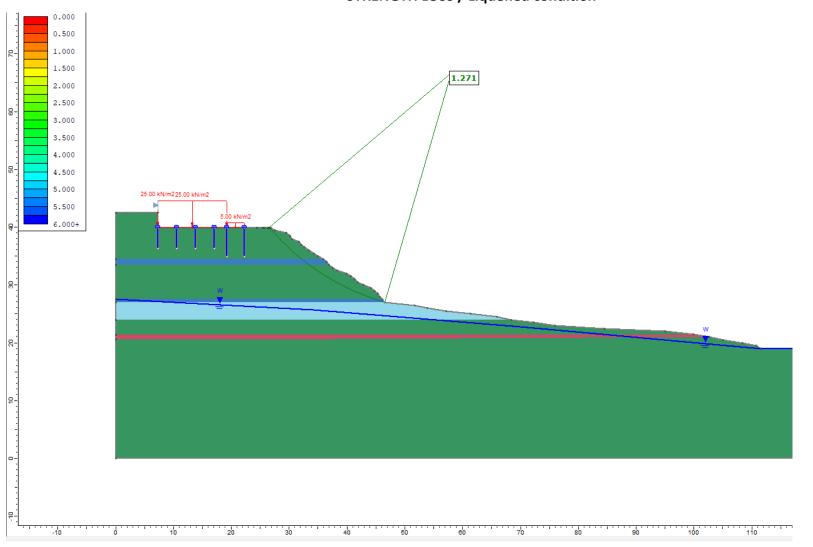


SLIDE 2018 model – Existing Site - ULS (Ultimate Limit State) – FOS required: 1.1




SLIDE model – Proposed Dwelling – Gravity Conditions – FOS required: 1.5


SLIDE model – Proposed Dwelling – Gravity Conditions –Elevated water table - FOS required: 1.3


SLIDE model – Proposed Dwelling - SLS (Serviceability Limit State) – FOS required: 1.45

SLIDE model – Proposed Dwelling - ULS (Ultimate Limit State) – FOS required: 1.05

STRENGTH LOSS / Liquefied condition

SLIDE model – Proposed Dwelling – Strength Loss

Building Code Clause	· _ ·	、B1
Building Code Clause	S)

PRODUCER STATEMENT – PS1 – DESIGN

ISSUED BY: Micius Consultants Limit	ed	
TO: Steelhaus	(Design Firm)	
TO:	(Owner/Developer)	
TO BE SUPPLIED TO: Hamilton City	Council	
	(Building Consent Authority)	
IN RESPECT OF: New Residence Pro	pposed Cameron Residence (Project#: 210176 (Description of Building Work))
AT: 136 State Highway 26	(Address)	BUILDING UNIT
	LOT. ² DI	
(Address) We have been engaged by the owner/c	leveloper referred to above to provide:	ATTROVED
Structural Engineering. Scopes refer N		BC Number - DD007.2021.00043914.001
	(Extent of Engagement)	
services in respect of the requirements	of Clause(s).B1of the I	Building Code for:
All or Part only (as specified in t	the attachment to this statement), of the propo	sed building work.
The design carried out by us has been	prepared in accordance with:	
Compliance Documents issued by the compliance Documents issued by the compliance because the complexity of the complexit	ne Ministry of Business, Innovation & Employn	nent.B1/VM1, B1/AS1 (verification method/acceptable solution)
Alternative solution as per the attack	ned schedule	
The proposed building work covered by	this producer statement is described on the d	Irawings titled:
"New Residence Proposed Cameron F together with the specification, and other	Residence" by Steelhausand numbered er documents set out in the schedule attached	
On behalf of the Design Firm, and su (i) Site verification of the following desig (ii) All proprietary products meeting the	bject to: gn assumptions foundation & other structural e ir performance specification requirements;	elements by others
documents provided or listed in the atta	a) the building, if constructed in accordance watched schedule, will comply with the relevant p design have the necessary competency to do s CM5 (Engineering Categories)	provisions of the Building Code and that b),
(Name of Design Professio	,	
	v Zealand and hold the following qualifications t holds a current policy of Professional Indemr New Zealand:	
		ure)
ON BEHALF OF Micius Consultants L	imited (Design Firm)	Date
	on by the Building Consent Authority named above. Int of damages payable arising from this statement a	

Design Firm only. The total maximum amount of damages payable arising from this statement and all other statements provided to the Building Consent Authority in relation to this building work, whether in contract, tort or otherwise (including negligence), is limited to the sum of \$200,000*.

This form is to accompany Form 2 of the Building (Forms) Regulations 2004 for the application of a Building Consent. THIS FORM AND ITS CONDITIONS ARE COPYRIGHT TO ACE NEW ZEALAND AND ENGINEERING NEW ZEALAND

Section 30C and Section 45, Building Act 2004

The Building		
Street address	136 State Highway 26	
Suburb	N/A	Town/city Newstead
Postcode	3286	Building consent no. N/A
The Owner		
Name(s)	Martin Cameron	
Email	N/A	Phone N/A Mamilton City Council
Address	N/A	

Basis for providing this memorandum

I am providing this memorandum in my role as the **specialist** designer who carried but or supervised specific Primary structure elements of restricted building work (RBW) design work as described in this memorandum. Other designers will provide memoranda covering the remaining RBW design work. Refer also to the attached PSI.

Identification of restricted building work (RBW) design work

I, Yang Benson Zhang

Primary structure: B1

Design work that is RBW		Description (as required) and reference to plans and specifications	Carried out or supervised
Foundations and subfloor framing	×	N/A	Carried out
Retaining walls	×	N/A	Carried out
Beams	✓	Roof trusses, lightsteel/structural steel beams and post, lightsteel midfloor framing (Steelhaus Drawings and Detailing Ref#J000608)	Carried out
Portal	×	N/A	Carried out
Bracing	×	N/A	Carried out
Other (primary)	✓	Lightsteel Wall Framings (Steelhaus Drawings and Detailing Ref#J000608)	Carried out

Note: SED = Elements subject to Specific Engineering Design outside of the scope of NZS3604:2011, unless otherwise noted.

Initial _____ Date

APPROVED

Waivers and modifications

Are waivers or modifications of the Building Code required?

If yes, please provide details of the waivers or modifications:

Building Code clause

Waiver/modification required

Issued by

Name	Yang Benson Zhang	Design entity/company	Micius Consultants Limited				
Chartered status	CPEng	Chartered no.	1009967				
Email	benson.zhang@micius.co.nz	Website	www.micius.co.nz				
Phone (daytime)	021 876206	Phone (after hours)	N/A				
Mobile	021 876206						
Postal address	191-195 Onehunga Mall, Onehunga, Auckland						
Physical address	191-195 Onehunga Mall, Onehunga, A	uckland					

Declaration

I, Yang Benson Zhang , LBP state that I have applied the skills and care reasonably required of a competent design professional in carrying out or supervising the RBW described in this memorandum and that based on this, I certify that the RBW described in this memorandum:

- complies with the Building Code; or
- complies with the Building Code subject to any waiver or modification of the Building Code described in this memorandum.

14/02/2022

Date

BC Number - DD007.2021.00043914.001

No

Building Consents Team Local Authority Date: 2 November 2021

Attention: Building Consents

RE: B2 Durability Compliance for Proposed Dwelling at 136 State Highway 26, Newstead

Dear Sir/Madam,

The purpose of this letter is to demonstrate how compliance with Clause B2 (Durability) of the Building Code will be achieved for the above project. We can confirm that for specifically designed structural elements that are included within our design documentation:

Material	Means of	Details
Lightguage steel framing	Compliance Alternative Solution	The lightgauge steel framing have been specified as per B1/AS1 acceptable solution "NASH STANDARD PART 2 Light Steel-frame Buildings". The framing supplier has provided a NZ Steel 50-year durability statement for above-floor steel framing.
Mild steel structure	Alternative Solution	Protection for mild steel has been specified in accordance with SNZ TS 3404 – Durability requirements for steel structures and components and AS/NZS2312 – Guide to the protection of structural steel against atmospheric corrosion by the use of protective coatings. This guide works on a time to first maintenance basis and assumes on-going maintenance. Refer to the attached maintenance plan (optional but recommended).

We trust you find above points in order but should you have any further queries please do not hesitate to contact us directly.

Kind Regards

2/11/2021

Benson Zhang CPEng, IntPE(NZ), CMEngNZ, MEngSt(Hons), BE Senior Structural Engineer/Director

136 State Highway 26, Newstead STRUCTURAL MAINTENANCE SCHEDULE

This schedule of ongoing inspection and maintenance of structural elements shall be included with the O&M manuals and provided to the Owner/Body Corporate and building managers.

Inspection/Mainte	nance timeframe and item
(a) Half-yearly	 Wash down all exposed steelwork that is not in a fully interior environment including: Veranda steelwork Steel carpark structure (beams, columns, braces etc) Deck and balcony steelwork Exposed façade steelwork, both primary and secondary structure Sub-ground floor mild-steel structures such as beams.
(b) 5-yearly	Inspect and repair sealant that encloses structural mild-steel components and/or timber with mild-steel fixings.
(c) 10-yearly	Check exposed timber fixings for corrosion, repair as required. Inspect/replace sealant that encloses structural mild-steel components and/or timber with mild-steel fixings. This will typically include sealants around the perimeter of precast panels. Note that 10 years is the expected useful life for many sealants. Check all exposed steelwork that is not in a fully interior environment for signs of corrosion. Repair protective coatings as required.
(d) 25-yearly	Inspect samples of structural steel that is hidden from view but not enclosed within a vapour barrier, and repair protective coatings as necessary. A typical example is a veranda with built-in steelwork. (Such steelwork should typically have duplex protective coatings). Inspection may typically require removal of claddings and/or the drilling of holes for borescope access. Repair as required. Inspect all exposed, external timber. Repair as required. Inspect all exposed, external reinforced concrete for signs of spalling. Repair as required.
Following seismic shaking > SLS1 event	Inspections and repair as per b), c) and d) above.

BC Number - DD007.2021.00043914.001

DURABILITY STATEME<mark>NT</mark>

For GALVSTEEL[®] (galvanised steel) manufactured by New Zealand Steel Limited and used for structural building elements

GALVS TEEL® material, when used for purlins, girts, battens or framing will have a durability of 50 years

when used and maintained as referred to below.

<u>Scope:</u> GALVSTEEL[®] used to manufacture building components such as wall, roof, floor and subframing, purlins, girts and battens used in buildings built in New Zealand covered by the New Zealand Building Code with a 50 year design life.

> This Durability Statement <u>does not</u> apply to Axxis[®] steel for framing used in building types and situations covered by the "Axxis[®] steel for framing" Durability Statement. This Durability Statement also <u>excludes</u> any other building components manufactured from GALVS TEEL[®] or other metal-coated products including nail plates and any composite wall, roof or floor systems. Composite systems include Galvsteel[®] embedded in concrete panels.

The above statements are subject to the following:

1. Specifications

Zinc coating weight;	Z275 (275g/m ²) or Z450 (450g/m ²)
Complying with;	AS 1397:2011.
Steel grade;	G250, G300, G450, G500 or G550.
Steel thickness range;	0.50-2.25 mm.
Bend diameter;	G250, G300; ≥ 2T.
	G450, G500, G550; ≥6 T
	(where $T = total coated thickness$).

2. <u>Fixing, Handling and Maintenance according to the following publications:</u>

- a) New Zealand Steel Limited, Specifiers and Builders Guide, and Installers Guide (refer <u>www.nzsteel.co.nz</u> for most current version).
- b) NZ Metal Roof & Wall Cladding, Code of Practice, (refer <u>www.metalroofing.org.nz</u> for most current version and updates).
- c) AS/NZS 2312:2014 (Incorporating Amendment 1;2017) Guide to the protection of structural steel against atmospheric corrosion by the use of protective coatings.
- d) Instructions and literature published by individual purlin and steel framing manufacturers.
- e) NASH Handbook Best Practice for Design and Construction of Residential and Low-Rise Steel Framing.
- f) NASH N11 House Insulation Guide version 2.2 April 2012.

Axxis® is a registered trademark of New Zealand Steel Limited.

3. Additional Fixing, Handling and Design Requirements.

- a) Bottom plate details must ensure that the bottom plate remains dry in service and is not subject to water ingress from internal or external sources. Damp-proof course (DPC) must be used and be at least 10mm wider than the building element.
- b) Separation methods as described within NZMRM Code of Practice 2.7 are required between any steel structural building element and incompatible materials which include, but are not limited to, timber treated with copper based preservatives, concrete, brickwork, copper and other dissimilar metals and also materials which may be moisture bearing during the life of the building.
- c) Subfloor framing requires a minimum finished ground level clearance of 150mm. Ventilation must comply with the requirements of NZS 3604:2011 Timber-framed buildings, including ground cover when specified. A minimum of 3500mm²/m² of floor space and a maximum of 7000mm²/m² of floor space is required.
- d) Site storage conditions must ensure that the GALVSTEEL[®] is kept dry when in a stacked condition.
- e) Prior to installation of external and internal lining the Galvsteel[®] must be clean, dry, free of corrosion, clear of debris and swarf.
- f) During storage and erection the material should be kept as dry as possible and the building closed in as soon as practicable to limit exposure to the elements. As a guide, this should be within 3 weeks in marine or geothermal environments and with-in 12 weeks in moderate environments from the delivery of the Galvsteel[®] material to site.
- g) GALVSTEEL[®] must be carried and not dragged when being moved.
- h) GALVSTEEL[®] must not be exposed to spatter from any welding activities.
- i) Wall wraps and roof underlays must comply with the requirements of NZS 2295:2006 Pliable, permeable building underlays for use with steel framing.

4. <u>Environment</u>.

Initially the macroclimate in which the building is situated needs to be determined. Table 2 is broken down into broad geographical regions of New Zealand. Within the regions the corrosivity is further defined by the distance to the nearest coast, harbour or estuary.

For aggressive industrial environments either externally or internally, or buildings subject to heavy geothermal influence, expected corrosion rates and recommended coatings will need to be determined on a case by case basis using New Zealand Steelwork Corrosion Coatings Guide HERA Report R4-133:2005 [d].

5. <u>Building Types</u>

This statement classifies six different building situations where structural steel may be used (N.B. one building may contain more than one of these situations);

a) Residential/Dry

Steelwork located in a dry internal environment, with an effective thermal break between external cladding and the structure, such as a fully enclosed office, an apartment building or a domestic house. This includes structures that are lined with building wrap and have internally controlled environments such as commercial shops and malls.

b) Internal

Steelwork located in a damp or humid environment, with no effective thermal break between the external cladding and structure. For structures such as storage sheds, garages and workshops which are typically closed when not in use. These structures are distinguished in the following two cases;

• Damp

Steelwork located in a damp internal environment where condensation may occur, where the structure may be in an open sunny location (i.e. when the structure is exposed to the sun and not under any form of cover). This is for structures such as exhibition halls, vehicle depots and warehouses.

High Humidity

Steelwork located in an internal high humidity environment with some pollution, where the structure may be in a humid and shaded location (i.e. when the shed is under a tree shaded from the sun). This is for structures such as food processing plants, breweries and dairies. Steel in subfloor spaces is included in this building type.

c) Open Front

Steelwork located near permanent openings (such as near doors or windows that remain open under operating conditions), and may be exposed to the prevailing winds. For structures such as open front lean-to, gable structure closed in on three sides or warehouses with large openings. This building type has two options, which are only applicable to the internal steelwork close to the openings as defined in Section 5.5 of reference [d].

- Protected
 - Structures that are protected from the wind coming off the closest sea.
 - Open

Structures that are open and exposed to the prevailing wind coming off the closest sea.

d) Awning

Steelwork that is exposed to the wind but is protected from the rain located in an open sided structure such as carports or structures closed in on one side only. The equivalent reference [b] designation is "Sheltered". The corrosion rate of this building type and that of "Open Front; Open" are identical.

6. <u>Coating Systems</u>

The following coating systems are referenced in Table 2 of this document, alternative solutions are also available and may be identified by reference to HERA Report R4-133:2005 [d], or AS/NZS 2312:2002 [c] or by discussions with paint suppliers or coatings specialists.

		1	st Coat		2	nd Coat		3 ⁿ	^d Coat		Total
System	Surface Preparation	Туре	PRN 1	Nominal DFT ² (µm)	Туре	PRN ¹	Nominal DFT ² (µm)	Туре	PRN ¹	Nomina1 DFT ² (µm)	nominal DFT ³ (µm)
P1	Deersee	Acrylic dis persion paint		40	Acrylic dis persion paint ⁴		40				80
P2	Degrease, wash and dry	Galvanised iron acrylic primer		40	Acrylic dis persion paint ⁴		40				80
P3 ⁵		Etch primer		12	Acrylic e la stomeric		350				362
P4 ⁵	Sweep	Polyamide						Acrylic 2-pack	C33	50	325
P5 ⁵	abrasive blast	cured epoxy primer	C10	75	High build epoxy	13	200	Polyurethane gloss	C26	50	325

Table 1

Notes on Table 1

¹PRN: Paint reference number as given in appendix C of reference [c].

²DFT; coating dry film thickness.

³The total nominal DFT does not include the galvanised coating thickness.

- ⁴Contact the coating supplier for feedback on the appropriate acrylic paint for its intended use. For example, for internal high humidity locations it is recommended to use acrylic enamel at the specified nominal DFT.
- ⁵P3, P4 and P5 coatings must be applied by a professional coating applicator to achieve the required durability performance.

7. <u>Maintenance</u>

Maintenance is necessary when the galvanised coating ceases to provide sacrificial protection to the steel base, or where the appearance is no longer aesthetically acceptable to the owner.

Rust staining or the growth of rust spots usually indicates the breakdown of galvanised coating. At the first sign of breakdown, the surface should be treated with an appropriate maintenance coating system. All maintenance should be carried out in accordance with AS/NZS 2312:2002 (Incorporating Amendment No. 1) [c] and HERA Report R4-133:2005 [d].

Regular inspections of the steel work and maintenance at the first signs of a breakdown in the galvanised coating will extend the durability of the sections.

8. <u>Recommended coating systems to achieve 50 year durability.</u> Table 2 shows the recommended coating system to achieve 50 year durability for the different building conditions in the various marine environments throughout New Zealand.

9. <u>Contacting New Zealand Steel</u>

It is important you contact the Technical Manager at New Zealand Steel on 0800 100 523 if you require specialist advice, clarification or assessment in relation to the use of Galvsteel[®] within the scope of this Durability Statement. If you believe there is an issue with the durability of Galvsteel[®] used for a project within the scope of this Durability Statement, you are urged to advise New Zealand Steel as soon as you become aware of the issue and before proceeding with any project still under construction.

10. <u>References</u>

- a) El Sarraf, R. and Hicks, S. Extending the Durability Performance of Galvsteel® using a Protective Coating System, (HERA) Structural Systems Technical Report SSTR-001 2008.
- b) NZS 3404 Part 1, Steel Structures Standard 2009; Standards New Zealand.
- c) AS/NZS 2312:2014 (Incorporating Amendment No. 1;2017), Guide to the protection of structural steel against atmospheric corrosion by the use of protective coatings.
- d) Clifton, G.C. and El Sarraf, R. New Zealand Steelwork Corrosion Coatings Guide (HERA Report R4-133) 2005.
- e) Compliance Document for New Zealand Building Code Clause E2 External Moisture
- f) Durability Statement Axxis® Steel for Framing

Disclaimer

With New Zealand Steel Limited's commitment to continuous improvement, information provided in this Durability Statement may be subject to modification. At the time of publication we believe the information contained in this document is the best available. Nonetheless, we reserve the right to modify any product, technique equipment or statement to reflect improvements in the manufacture and application of Galvsteel®. The information is supplied without prejudice to New Zealand Steel Limited's standard terms and conditions of sale. In the event of any conflict between this information and the standard terms and conditions, the standard terms and conditions shall prevail.

This edition of the Galvsteel[®] used for structural building elements Durability Statement supersedes all previous editions. It is important to check you have the latest edition of the Durability Statement by referring to <u>www.nzsteel.co.nz</u> or contacting New Zealand Steel Limited on 0800 100 523.

Galvsteel® durability statement

Table 2

Corrosion						Internal		Open front		
map to NZS 3404.1	IS O 9223	Typically	Location	Characterised Residential by /Dry		Damp	High humidity	Protected	Open	Awning
		Within 200m of breaking surf	West coast, South Island		1	3	4	4	4	4
	C5	Within 100m of breaking surf	West coast, North Island	Heavy salt deposits, almost constant smell of salt spray in the air.	1	3	4	4	4	4
_	Ċ	Within 50m of breaking surf	Other coasts	un.	1	3	4	4	4	4
Seaspray C4		200m up to 500m or more inland from breaking surf. In the immediate vicinity of calm salt water such as harbour foreshores.	West coast, South Island	Medium salt deposits,	1	3	4	4	4	4
		50m up to 500m or more inland from breaking surf. In the immediate vicinity of calm salt water such as harbour foreshores.	All other coasts	Frequent smell of salt in the air.	1	1	3	4	4	4
	C4	500m to 1km from breaking surf. In the immediate vicinity of calm salt water such as estuaries.	West coast of both islands and South coast of South Island.	Little salt deposits, occasional smell of	1	1	3	4	4	4
4 C3		500m to 1km from breaking surf. In the immediate vicinity of calm salt water such as estuaries.	East coast of both islands, South coast of North Island and all harbours.	salt in the air.	1	1	2	3	4	4
	С3	1km to 20 km from salt water	West coast of both islands and South coast of South Island	Minor salt deposits,	1	1	3	4	4	4
		1km to 5km from salt water	East coast of both islands, South coast of North Island and all harbours.	no smell of salt in the air.	1	1	2	3	4	4
Zone 2	C2	20km to 50km from salt water.	West coast of both islands and South coast of South Island	No marine influence.	1	1	1	2	3	3
		5km to 50km from salt water	East coast of both islands, South coast of North Island and all harbours.		1	1	1	2	3	3
Zone 3		Inland more than 50km from salt water.	Both Islands		1	1	1	1	1	1

Note; all environments may be extended inland by prevailing winds and local conditions.

Key

1	Z275
2	Z275 and one of the paint systems P1 – P5 applied when new, $\underline{\text{or}}$ Z450.
3	Z275 and one of (P3, P4 or P5) applied when new, or P1 or P2 applied when new and recoated every 15 years.
4	Z275 and one of (P3, P4 or P5) applied when new and then recoated every 15 years

PRODUCER STATEMENT-PS1 DESIGN

Building Code Clause(s):	B1,	Job number: 12843
ISSUED BY: (Engineering Design Firm)	Arnold and Johnstone 2015 Ltd	
TO: (Client)	Martin Cameron	
(enemy		Hamilton City Council
TO BE SUPPLIED TO: (Building Consent Authority)	Hamilton City Council	BUILDING UNIT
IN RESPECT OF: (Description of building work))	New build	APPROVED
AT: (Address)	136 State Highway 26, Newstead, Hamilton	BC Number - DD007.2021.00043914.001
LEGAL DESCRIPTION	Lot 2 DP 556335	

We have been engaged by Martin Cameron to provide:

SED Bracing, SED Retaining Walls, SED Foundations, SED Beams, SED Posts

in respect of the requirements of the Clause(s) of the Building Code specified above for part only, as specified in the attached Schedule, of the proposed building work.

In this document SED means "Specific Engineering Design".

The design carried out by Arnold and Johnstone 2015 Ltd has been prepared in accordance with:

✓ compliance documents issued by the Ministry of Business, Innovation & Employment (Verification method /acceptable solution): B1/VM1, B1/VM4

The proposed building work covered by this producer statement is described in the drawings specified in the attached Schedule, together with the specification, and other documents set out in the attached Schedule.

On behalf of Arnold and Johnstone 2015 Ltd, and subject to:

- site verification of the following design assumptions:
 - o In accordance with Titus Consulting Engineers report dated 2.2.21 Rev E, Ref 11122
- all proprietary products meeting their performance specification requirements;

I believe on reasonable grounds that:

- the building, if constructed in accordance with the drawings, specifications, and other documents provided or listed in the attached Schedule, will comply with the relevant provisions of the Building Code specified above; and that
- the persons who have undertaken the design have the necessary competence to do so.

I recommend the CM3 level of construction monitoring.

I, Raman Forbes, am:

- CPEng number 228942
- and hold the following qualifications: B.E. (Hons)

Arnold and Johnstone 2015 Ltd holds a current policy of Professional Indemnity Insurance no less than \$200,000.

Arnold and Johnstone 2015 Ltd is not a member of ACE New Zealand.

SIGNED BY:

Raman Forbes

(Signature):

Date: 21/2/22

ON BEHALF OF: Arnold and Johnstone 2015 Ltd

Note: This statement has been prepared solely for Hamilton City Council and shall not be relied upon by any other person or entity. Any liability in relation to this statement accrues to Arnold and Johnstone 2015 Ltd only. As a condition of reliance on this statement, Hamilton City Council accepts that the total maximum amount of liability of any kind arising from this statement and all other statements provided to Hamilton City Council in relation to this building work, whether in tort or otherwise, is limited to the sum of \$200,000.

This form is to accompany Form 2 of the Building (Forms) Regulations 2004 for the application of a Building Consent.

SCHEDULE TO PS1

Please include an itemised list of all referenced documents, drawings, or other supporting materials in relation to this producer statement below:

- Certificate of Design Work, Construction Monitoring Schedule, Structural Maintenance Schedule, B2 Letter in Lieu Design
- Engineering Calculations: Structural Calculations
- Architectural Drawing Set: Sheet 3, 7 to 19 dated 17/2/22, all rev A

Limited Scope of Engagement

We have been engaged by Martin Cameron to provide services in respect of the requirements of the Clause(s) of the Building Code specified above for the following parts of the proposed building work:

SED Bracing, SED Retaining Walls, SED Foundations, SED Beams, SED Posts

GUIDANCE ON USE OF PRODUCER STATEMENTS

Information on the use of Producer Statements and Construction Monitoring Guidelines can be found on either the ACE New Zealand or Engineering New Zealand websites.

Producer statements were first introduced with the Building Act 1991. The producer statements were developed by a combined task committee consisting of members of the New Zealand Institute of Architects (NZIA), Institution of Professional Engineers New Zealand (now Engineering New Zealand), Association of Consulting and Engineering New Zealand (ACE NZ) in consultation with the Building Officials Institute of New Zealand (BOINZ). The original suite of producer statements has been revised at the date of this form to ensure standard use within the industry.

The producer statement system is intended to provide Building Consent Authorities (BCAs) with part of the reasonable grounds necessary for the issue of a Building Consent or a Code Compliance Certificate, without necessarily having to duplicate review of design or construction monitoring undertaken by others.

PS1 DESIGN: Intended for use by a suitably qualified independent engineering design professional in circumstances where the BCA accepts a producer statement for establishing reasonable grounds to issue a Building Consent;

PS2 DESIGN REVIEW: Intended for use by a suitably qualified independent engineering design review professional where the BCA accepts an independent design professional's review as the basis for establishing reasonable grounds to issue a Building Consent;

Forms commonly used as a certificate of completion of building work are Schedule 6 of NZS 3910:2013 or **PS3 CONSTRUCTION:** Schedules E1/E2 of NZIA's SCC 20112

PS4 CONSTRUCTION REVIEW: Intended for use by a suitably qualified independent engineering construction monitoring professional who either undertakes or supervises construction monitoring of the building works where the BCA requests a producer statement prior to issuing a Code Compliance Certificate.

This must be accompanied by a statement of completion of building work (Schedule 6).

The following guidelines are provided by ACE New Zealand and Engineering New Zealand to interpret the Producer Statement.

Competence of Engineering Professional

This statement is made by an engineering firm that has undertaken a contract of services for the services named, and is signed by a person authorised by that firm to verify the processes within the firm and competence of its personnel.

The person signing the Producer Statement on behalf of the engineering firm will have a professional qualification and proven current competence through registration on a national competence-based register such as a Chartered Professional Engineer (CPEng). Membership of a professional body, such as Engineering New Zealand provides additional assurance of the designer's standing within the profession. If the engineering firm is a member of ACE New Zealand, this provides additional assurance about the standing of the firm. Persons or firms meeting these criteria satisfy the term "suitably qualified independent engineering professional".

Professional Indemnity Insurance

As part of membership requirements, ACE New Zealand requires all member firms to hold Professional Indemnity Insurance to a minimum level.

The PI Insurance minimum stated on the front of this form reflects standard practice for the relationship between the BCA and the engineering firm.

Professional Services during Construction Phase

There are several levels of service that an engineering firm may provide during the construction phase of a project (CM1-CM5 for engineers3). The BCA is encouraged to require that the service to be provided by the engineering firm is appropriate for the project concerned.

Requirement to provide Producer Statement PS4

BCAs should ensure that the applicant is aware of any requirement for producer statements for the construction phase of building work at the time the building consent is issued. No design professional should be expected to provide a producer statement unless such a requirement forms part of Arnold and Johnstone 2015 Ltd's engagement.

Refer Also:

Conditions of Contract for Building & Civil Engineering Construction NZS 3910: 2013 1

- 2 NZIA Standard Conditions of Contract SCC 2011
- NZIA Standard Conditions of Contract SCC 2011 Guideline on the Briefing & Engagement for Consulting Engineering Services (ACE New Zealand Engineering New Zealand 2004) 3
- 4 PN01 Guidelines on Producer Statement

www.engineeringnz.org

APPROVED BC Number - DD007.2021.00043914.001

BUILDING UNIT

CONSTRUCTION MONITORING SCHEDULE

SCHEDULE OF MONITORING FOR

Address: 136 State Highway 26, Newstead, Hamilton

Job number: 12843

BC Number - DD007.2021.00043914.001

APPROVED

Hamilton City Council

BUILDING UNIT

We propose that at least the following site monitoring is undertaken to Engineering New Zealand/ACENZ CM3:

No.	Item of monitoring	Timeframe	To be monitored by
1.	Driven timber piles	Driven timber piles Foundation pre-pour (Contractor to provide copy of pile sets to Engineer for review and approval prior to cutting off pile head to height.)	
2.	Foundation beams, pads and slabs	Pre-pour	Engineer
3.	Internal beams and connections	While all connections are clearly visible, pre- line and prior to building in to such an extent that remediation work could not be carried out.	Engineer
4.	Internal posts and connections	While all connections are clearly visible, pre- line and prior to building in to such an extent that remediation work could not be carried out.	Engineer
5.	External beam and connections	While all connections are clearly visible, pre- line and prior to building in to such an extent that remediation work could not be carried out.	Engineer
6.	External posts and connection	While all connections are clearly visible, pre- line and prior to building in to such an extent that remediation work could not be carried out.	Engineer
7.	Concrete block work	Pre-pour	Engineer
8.	Bracing walls	Pre & post-lining	Engineer

Notes:

a) The above items of monitoring are the minimum required to enable Arnold and Johnstone 2015 Ltd to issue a PS4 – Producer Statement Construction Review for the specific engineering design items.

- b) The above items of monitoring do not cover work constructed in accordance with NZS 3604:2011, for which monitoring is to be undertaken by the Building Consent Authority.
- c) The Contractor/Builder is to provide Arnold and Johnstone 2015 Ltd at least 24 hours' notice of the requirement for monitoring. The above timeframes are indicative, the Engineer and Contractor are to agree the timing of monitoring prior to work commencing on site.
- d) A copy of this monitoring schedule is to be held on site during the works, and the Contractor/Builder is to provide reasonable and safe access to enable works to be monitored according to the schedule.
- e) The above schedule does not necessarily represent the actual number of monitorings to be undertaken. The number of monitorings will depend on the construction method, sequence of the works and whether or not unforeseen conditions or difficulties are encountered on site.

CERTIFICATE OF DESIGN WORK MEMORANDUM FROM LICENSED BUILDING PRACTITIONER

SECTION 30C AND SECTION 45, BUILDING ACT 2004

THE BUILDING			BC Ni	umber - DD007.2021.00043	914.001
Street Address	136 State Highway 26				
Suburb	Newstead	Town/City		Hamilton	
Postcode					

THE OWNER

Name(s)	Martin Cameron				
Email	martin@cameron.co.nz	Phone	0224444334		
Address	136 State Highway 26, Newstead, Hamilton				

BASIS FOR PROVIDING THIS MEMORANDUM

I am providing this memorandum in my role as the specialist designer who carried out or supervised specific Primary structure elements of restricted building work (RBW) design work as described in this memorandum. Other designers will provide memoranda covering the remaining RBW design work. Refer also to the attached PS1.

IDENTIFICATION OF RESTRICTED BUILDING WORK (RBW) DESIGN WORK

I, Raman Forbes carried out or supervised the following RBW design work:

PRIMARY STRUCTURE: B1

Design work that is RBW		Description (as required) and reference to plans and specifications	Carried out or supervised
Foundations	<	SED Foundations as per foundation plan Sheet 13, 16 & 17	Supervised
Retaining walls	V	SED Retaining walls as per drawings and retaining wall plan Sheet 15 to 17	Supervised
Beams	<	SED beams and posts as per beam layout plan Sheet 3, 7 to 12, 18 & 19	Supervised

Job Number: 12843

Job Address: 136 State Highway 26, Newstead, Hamilton

Portal	×	Not applicable	Not applicable
Bracing	\checkmark	SED basement floor bracing as per bracing plan Sheet 14	Supervised
Other (primary)	×	Not applicable	Not applicable

Note: SED = Elements subject to Specific Engineering Design outside of the scope of NZS3604:2011, unless otherwise noted.

WAIVERS AND MODIFICATIONS

Are waivers or modifications of the Building Code required? No

If yes, please provide details of the waivers or modifications:

ISSUED BY

Name	Raman Forbes	Design entity/company	Arnold and Johnstone 2015 Ltd
Chartered status	Chartered Professional Engineer	Chartered no.	228942
Email	raman@ajeng.co.nz	Website	www.ajeng.co.nz
Phone (daytime)	07 5780921	Phone (after hours)	021 1298920
Mobile	021 1298920		
Postal address	55 Girven Road, Mt Maunganui		
Physical address	55 Girven Road, Mt Maunganui		

DECLARATION

I, Raman Forbes, LBP state that I have applied the skills and care reasonably required of a competent design professional in carrying out or supervising the RBW described in this memorandum and that based on this, I certify that the RBW described in this memorandum complies with the Building Code.

Signature_____ Date 21/2/22 Hamilton City Council BUILDING UNIT APPROVED BC Number - DD007.2021.00043914.001

Job Number: 12843 Job Address: 136 State Highway 26, Newstead, Hamilton

STRUCTURAL MAINTENANCE SCHEDULE

NEW BUILD AT 136 STATE HIGHWAY 26, NEWSTEAD, HAMILTON

This schedule of ongoing inspection and maintenance of structural elements shall be included with the Operations and Maintenance manuals and provided to the Owner/Body Corporate and building managers.

Inspection/maintenance t					
(a) Half-yearly	Wash down all exp including:	Wash down all exposed steelwork that is not in a fully interior environment including:			
	• Steel Carpark s	structure (beams, columns, braces etc)			
	Deck and balco	ony steelwork			
	Exposed façad	e steelwork, both primary and secondary struct	ure		
(b) 5 yearly		pair sealant that encloses structural mild-steel o with mild-steel fixings	components		
(c) 10 yearly	Check exposed	timber fixings for corrosion, repair as required			
		e sealant that encloses structural mild-steel con	•		
		ild-steel fixings. This will typically include sealan			
	perimeter of p many sealants	recast panels. Note that 10 years is the expecte	d useful life for		
		• Check all exposed steelwork that is not in a fully interior environment for signs of corrosion. Repair protective coatings as required.			
(d) 25 yearly	 within a vapout example is a vertical data and the second data and t	 within a vapour barrier, and repair protective coatings as necessary. A typical example is a veranda with built-in steelwork. (Such steelwork should typically have duplex protective coatings). Inspection may typically require removal of claddings and/or the drilling of holes for borescope access. Repair as required. Inspect all exposed, external timber. Repair as required. 			
	Repair as requ	ired.			
(e) Following fit-out or alterations	Not applicable.				
(f) Following seismic shaking > SLS1 event	Not applicable. In the second				
		BUILDING UNIT APPROVED			
		BC Number - DD007.2021.00043914.001			

To the Building Official, Hamilton City Council New build at 136 State Highway 26, Newstead, Hamilton

COMPLIANCE WITH BUILDING CODE CLAUSE B2 – DURABILITY

The purpose of this letter is to demonstrate how compliance with Clause B2 (Durability) of the Building Code will be achieved for the above project. We can confirm that for specifically designed structural elements that are included within our design documentation:

Material	Means of Compliance	Details
Reinforced concrete	BS2/AS1	Concrete cover to reinforcing has been selected in accordance with NZS3101, Part 1, Section 3
Structural timber	BS2/AS1	Timber treatment has been selected in accordance with Table 1A of B2/AS1
Mild steel structure	Acceptable Solution	Protection for mild steel has been specified in accordance with SNZ TS 3404 – Durability requirements for steel structures and components and AS/NZS2312 – Guide to the protection of structural steel against atmospheric corrosion by the use of protective coatings. This guide works on a time to first maintenance basis and assumes on-going maintenance.

Yours faithfully,

Allas

Raman Forbes

For and on behalf of

Arnold and Johnstone 2015 Ltd Job Number: 12843 Job Address: 136 State Highway 26, Newstead, Hamilton

136 State Highway 26, Hamilton Proposed Cameron Residence Structural Calculations

For Martin Cameron

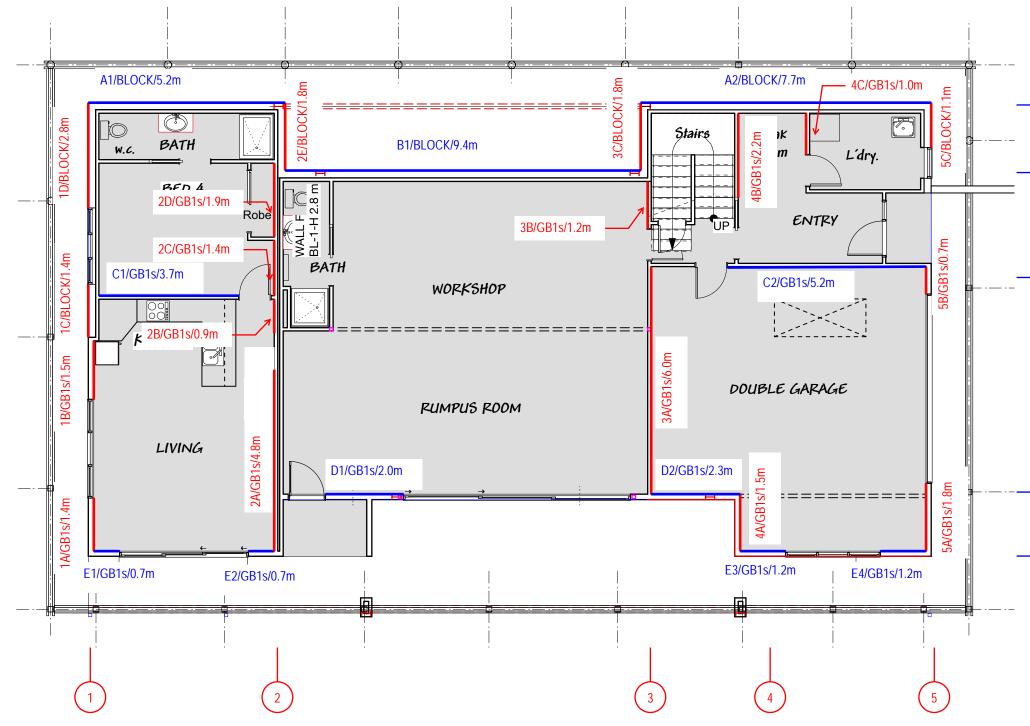
3 December 2021

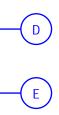
Ref: 12843

PROJECT TITLE:	136 State Highway 26, Hamilton PROJECT No: 1Proposed Cameron Residence1		12843
CLIENT:	Martin Cameron	ENGINEER:	NAM
CALC TITLE:	Structural Calculations	DATE:	03/12/2021

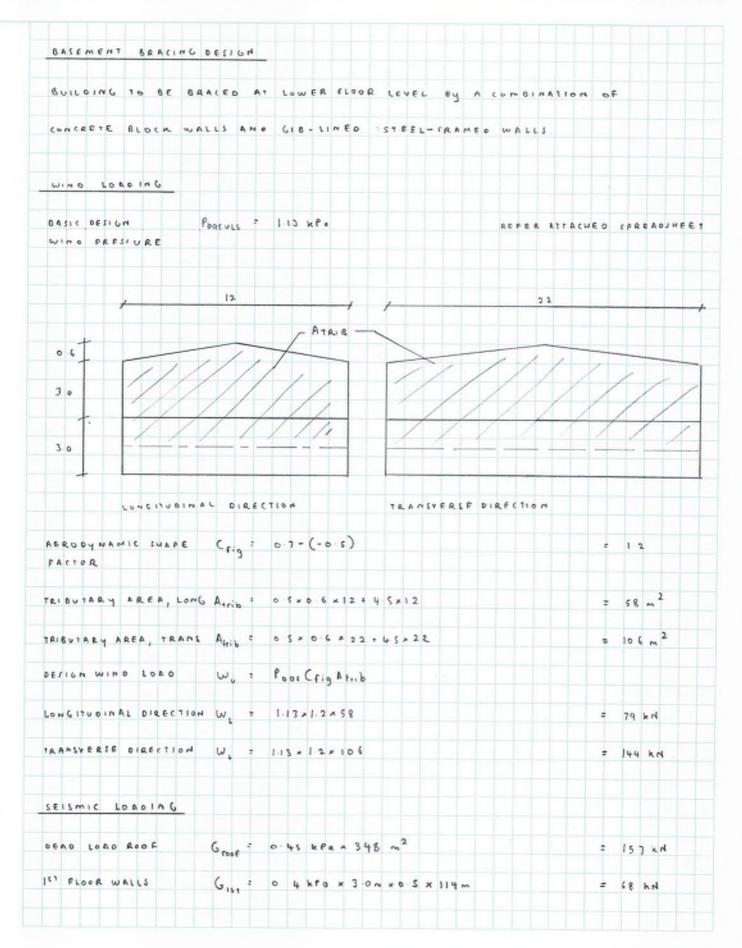
SCOPE:	Complete the structural calcu 136 State Highway 26, Hamil completed by Arnold & Johns Basement Bracing De Retaining Wall Desig Pile Design Footing Beam Design Floor Slab Design Ground Floor Beam D Block Lintel Design Deck Bearer Design	ton. The following SED ite tone: esign n Design of elements above the ba	ms have been Isement floor level				
	including the roof structure, so joists has been completed by						
	Hand calculations						
CALCULATION METHOD:	Excel spreadsheets						
	Space Gass						
	General						
	Importance Level	IL2	Normal structure				
	Design Life	50 years	IL2 Building				
	Location	Hamilton					
	Seismic						
	Hazard Factor	Z = 0.16	Hamilton				
DESIGN PARAMETERS:	Return Period Factor	R = 1.0	1/500 years				
	Near Fault Factor	N(T,D) = 1.0	No near faults				
	Site Subsoil Class	Type D	Deep or soft soil				
	Period	T = 0.4s	Both directions				
	Wind						
	Wind Region	A7	Hamilton				
	Terrain Category	TC2	Open terrain				

	NZS1170:2002	Structural Design Actions		
	NZS3101:2006	Concrete Structures Standard		
	NZS3404:1997	Steel Structures Standard		
	NZS3603:1993	Timber Structures Standard		
REFERENCES:	NZS3604:2011	Timber-framed Buildings		
	NZS4230:2004	Design of reinforced concrete masonry structures		
	Reference has also been made to specific manufacturer information throug the structural calculations.			
Reference has also been made to the Engineering Assessment and Report by Titus Consulting Engineers Project No. 11122 dated 2 Feb				


TABLE OF CONTENTS Page Number **Basement Bracing Design** 1 – 19 1. 2. Retaining Wall Design 20 – 33 3. Pile Design 34 – 49 4. Footing Beam Design 50 - 54 5. Floor Slab Design 55 – 59 6. Beam Design 60 - 747. Block Lintel Design 75 – 77 8. Bearer Design 78 – 87


1. BASEMENT BRACING DESIGN

Ref: 12843



DATE 28.05

JOB ... 13.6 MORRINSVILLE ROAD

JOB 136 MORRINSVILLE ROAD

SEISMIC WEIGHT	ROOF	Wares ?	157 + 68			2	225 KN
		N.V.					
DEAG LOAD ST	FEL	Gwoll =	68 kN + 0	4 × 3 × 0 · 5 ×	75		113 KN
FRANED WALL	2						
				2			
DEAG LORO FLO	9.0	Gnoor	0.5 kPa #	221 0			111 K.N
DEAD LOAD DEC	~	Gdeck	0.5 kPa × 16	S M		2	83 K.N
DEAD LOAD BLOCK	WALL	6 .	22 11/ 3 . 0	-19 + 32 + 3			
DENO FORF BLOCK		64	11-14-10	11 2 32 2 3 .	× 0-5	3	201 H.H
TOTAL DEAD LO	AQ	6 .	113+111 + 8	3 1 2 5 1			
			113-111-0			-	508 × N
LIVE LOAD PL	DOR	o. •	1.5 x 2 2 1		SEISMIC WEIGHT		332 KN
		floor			ED IS CONSERVATI		552 EN
LIVE LOAD DECK		0	2.0 + 165	AS THE FIN	AL AREA OF THE D	ECK 🔹	330 EN
		Geck			REDUCED FROM T	HE	
TOTAL LIVE LOA	0	0 :	332 + 330	INSPECTIO	JLATED - OK BY	2	662 KN
SEISMIC WEICHT I	T FLOOR	ω, =	G . Yaye	Q			
		-	508 + 0 5 + 0	3 × 662		:	667 kd
TOTAL SEISMIC	WEICHT	ω. =	225 + 607			2	832 KN
PETERMINE HOR	150NJAL	SEISMIC	SHEAR USI	NG EQUIVALEN	IT STATIC HORIE	ONTAL METH	0 D .
EQUIVALENT STATE		F	F 10.00V	and the second s			
EQUIVALENT STAT	CFORCE	e (5	ω, μ ₁ , ω, μ ₁			
			-	Testint			
		F	1 V 80.0	0 0 MA 9 01	ELLEWMERE		
		E					
LEVEL	W; (KN)	Hilm) w:H;	Fi(kN)	Mi (KNm)		
ROOF	225	60		392	0		
FIRST FLOOR	607	3.0		44.0	1176		
	832		3171	832	3672		
THEREFORE DASE	MENT W	ALLS OF	SIGNED FOR	THE FOLLO	WING		
SHEAR DEMAND		V' 3	832 KN K	C			
MOMENT DEMAN	0	M' 3	3672 kH~	× Co,			
FOR SINGLY -	AGINFOR	CEO BL	LOCK WALLS	A LOOPI A	overinity o	F 1.25	

JOB No ... 12.8 4 3

PAGE

ВҮ..... N А М

JOB 136 MORRINSVILLE ROAD

SEISMIC COEFFI	CIENT Con -	P389	REFER ATTACHED SPREADSHEE
FOR NEN GIS-	LINEO WALL	ADOPT A OUCTILITY OF	2.5
SRISMIC COEFFIC	IGNT COT :	0-138	REFER ATTACHED SPREADSHE
GIVEN PRIMARIL	Y STEEL-F	RAMED WALLS , CHECK GL	OBAL CAPACITY USING N=3.5.
NEED TO SEPAR	ATELY CHE	ICK OLOCH WALLS FOR MI	GHER N= 1-25 LOADS LATER
LONGITUDIANE W	າມຄຸ້າ	79×20	# 1550 \$U
TRANSVERSE WIN	o w, :	144 x 20	د 2880 BU
EARTHQUAKE DE	MARD E	832 × 0·138 × 20	* 2296 Bu
FOR SLOCKWAL	LS ADOPT A	BRACING LAPACITY OF	100 01/m
REFER TO THE	ATTACHEO SP	READSHEET FOR FULL CALL	ULATIONS
ADOPT BRACING L	AYOUT AS PE	R THE ATTACHED PLAN	
BLOCKWALL CA	PACITY		
CHECK WHETHE	R A CAPAC	ing of loo ev/m is REA	SONABLE. CIVEN A OUCTILITY
0F 3.5 WAS A00	PTEO, NEED	TO INCREASE TO REFLECT	AN EQUIVALENT CAPACITY
FOR A DUCTILITY	0# 1-25		
EQUIVALENT CAP	E PTIDA	100 BU/m x 0.389	= 282 60/m
	1	0.138	202 007
OR IN KN		282	# 14 kN/m
		20	
FOR MOMENT		14 × 3	> 42 kNm/m
ADOPT MD16 - 40	N & TABV 0	DI2-400 HOT REBAR. REF	ER TO THE ATTACHED
SPREADSHEET FOF	A FULL CALC	ULATIONS	
BLOCK WALLS ON			

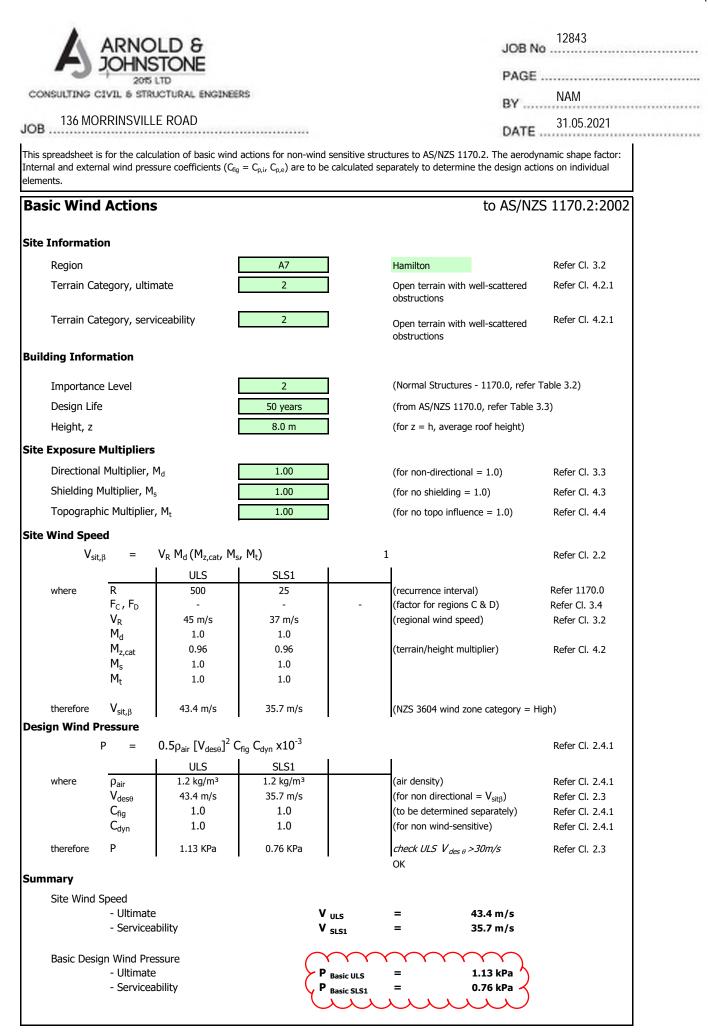
JOB No 12843

PAGE	
BY	NAM
DATE	31.05.2021

BRACING DESIGN SPREADSHEET

Wall Bracing	Wind	EQ		
Demand	BU	BU		
Longitudinal	1580	2296		
Transverse	2880	2296		
	Long	Trans		
Bracing Lines?	5	5		
Timber Floor?	No			

Bracing	0.4	4m	1.2	2m
Туре	Wind	EQ	Wind	EQ
GS1-N	50	55	70	60
GS2-N	70	65	95	85
GS2-NOM	50	50	50	50
GSP-H	100	115	150	150
BL1-H	90	100	125	105
BLG-H	110	115	150	145
BLP-H	120	135	150	150
BLOCK	100	100	100	100
GB1s	70	85	125	105
EXTG	50	50	50	50


Longitudinal Direction										
Brace	Wall	Length	Height	Wall	Wind	EQ				
Line	ID	т	т	Туре	BU	BU				
А	1	5.2 m	2.4 m	BLOCK	520	520				
Α	2	7.7 m	2.4 m	BLOCK	770	770				
В	1	9.4 m	2.4 m	BLOCK	940	940				
С	1	3.7 m	3.0 m	GB1s	370	311				
С	2	5.2 m	3.0 m	GB1s	520	437				
D	1	2.0 m	3.0 m	GB1s	200	168				
D	2	2.3 m	3.0 m	GB1s	230	193				
E	1	0.7 m	3.0 m	GB1s	39	48				
Е	2	0.7 m	3.0 m	GB1s	39	48				
E	3	1.2 m	3.0 m	GB1s	120	101				
E	4	1.2 m	3.0 m	GB1s	120	101				

Longitudinal Direction											
Brace	Ext.	W _{trib}	Wind	Min	Check	E _{trib}	EQ	Min	Check		
Line	т	BU	BU	Wind	Oneek	BU	BU	EQ	Oneek		
Α	12.2 m	0	1290	183	ок	0	1290	230	ок		
В	9.8 m	0	940	158	ок	0	940	230	ок		
С	0.0 m	0	890	158	ОК	0	748	230	ок		
D	9.6 m	0	430	158	ОК	0	361	230	ок		
E	12.4 m 0		318	186	ОК	0	297	230	ок		
		0	3868	1580	245%	0	3636	2296	158%		

<mark>ansve</mark> Brace	Wall	Length	Height	Wall	Wind	EQ
Line	ID	u u		Туре	BU	BU
1	А	1.4 m	3.0 m	GB1s	140	118
1	В	1.5 m	3.0 m	GB1s	150	126
1	С	1.4 m	2.4 m	BLOCK	140	140
1	D	2.8 m	2.4 m	BLOCK	280	280
2	А	4.8 m	3.0 m	GB1s	480	403
2	В	0.9 m	3.0 m	GB1s	50	61
2	С	1.4 m	3.0 m	GB1s	140	118
2	D	1.9 m	3.0 m	GB1s	190	160
2	Е	1.8 m	2.4 m	BLOCK	180	180
3	А	6.0 m	3.0 m	GB1s	600	504
3	В	1.2 m	2.4 m	GB1s	150	126
3	С	1.8 m	2.4 m	BLOCK	180	180
4	А	1.5 m	3.0 m	GB1s	150	126
4	В	2.2 m	3.0 m	GB1s	220	185
4	С	1.0 m	3.0 m	GB1s	56	68
5	А	1.8 m	3.0 m	GB1s	180	151
5	В	0.7 m	3.0 m	GB1s	39	48
5	С	1.1 m	2.4 m	BLOCK	110	110

Transve	rse Direc								
Brace	Ext.	W _{trib}	Wind	Min	Check	E _{trib}	EQ	Min	Check
Line	m	BU	BU	Wind		BU	BU	EQ	
1	12.0 m	0	710	288	ок	0	664	230	ОК
2	1.8 m	0	1040	288	ок	0	922	230	ок
3	1.8 m	0	930	288	ок	0	810	230	ок
4	1.4 m	0	426	288	ок	0	379	230	ок
5	12.0 m	0	329	288	ок	0	309	230	ок
		0	3436	2880	119%	0	3083	2296	134%

Page 7

C:\Users\nick\Dropbox (Arnold and Johnstone)\A+J\1.0 Job Folder\12843 136 SH26, Cameron\1.0 Calcs\Rev 2 Design\Spreadsheets\12843 3¥/05/202diag52 pm Spreadsheet Basic Wind Calc 1 of 1

CONSULTING CIVIL & STRUCTURAL ENGINEERS

136 MORRINSVILLE ROAD

Design Working Life

Exceedence prob ULS, 1/K: K=

Exceedence prob SLS, 1/K: K=

SLS2 Return Period Factor, Rs2

Ultimate Design Spectra

Service Design Spectra

Return Period Factor, Ru

Return Period Factor, Rs

Seismic Coeff (ULS), Cou Base Shear, Vbu

Seismic Coeff (SLS), Cds

Classification of parts Structure Limit State

Seismic Mass, Wt

Building Period T

Importance Level

Soil Type

Location

Zuser

Ζ

D

Cdmin

Nmax

N(T,D)u

Ductility

Ch(T)

C(1)

Ş,

K

N(T.D)s

Ch(T)

C(T)s

Sp

Κμ

hr

Тр

Rp

Ci(Tp)

Ductility μ

C(0) ULS

Input Data

JOB

50

2

D

0.16

500

25

1

0.25

#N/A 25

0

0.40

0.03

1

Static ULS

1

3 00

0,48

1.25 0.925

1.14

0.389

Static SLS

1

3.00

0.12

1 0.7

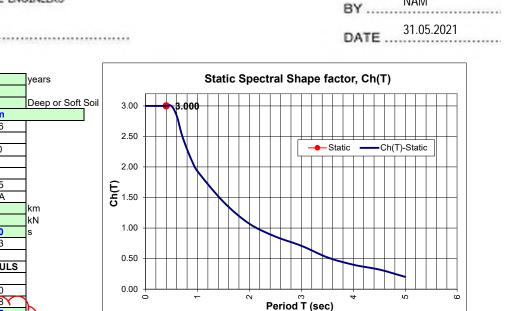
1.00

0.084

P.1

UIS

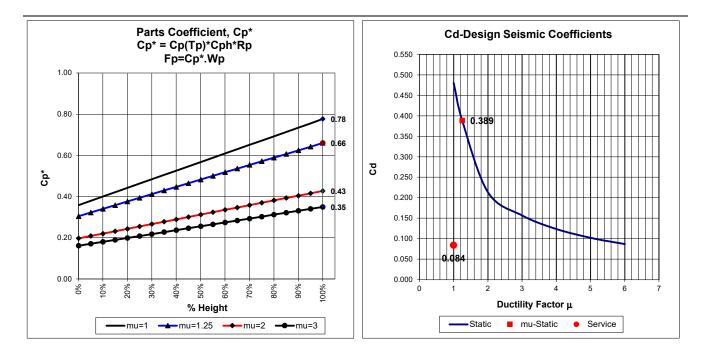
0.1792


0.4

2

1

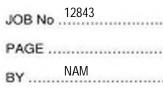
m


Hamilton

	De	esign Base S	hear	
Ultir	nate		Static	Base Shear
μ	Sp	Κμ	Cd	kN
1	1.00	1.00	0.480	0
1.25	0.93	1.14	0.389	0
2	0.70	1.57	0.214	0
3	0.70	2.14	0.157	0
4	0.70	2.71	0.124	0
5	0.70	3.29	0.102	0
6	0.70	3.86	0.087	0
				_
Dynamic Se	caling			
	Struc	cture Regular	Y	
	Static Ba	se Shear, Ve	0	kN
Dynami	c Analysis B	ase Shear, V		kN
	Sca	aling factor, K	1.000	
Scale	ed base She	ar & % Static	0	#DIV/0!

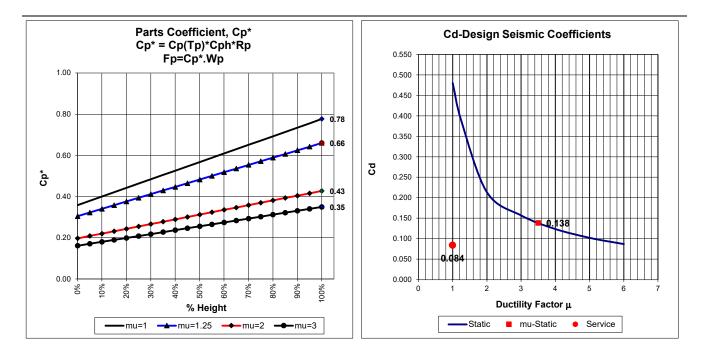
Notes:

Parts


C:\Users\nick\Dropbox (Arnold and Johnstone)\A+J\1.0 Job Folder\12843 136 SH26, Cameron\1.0 Calcs\Rev 2 Design\Spreads14et5202343:55 pm Seismic Coefficient Spreadsheet Spectra 1 of 1

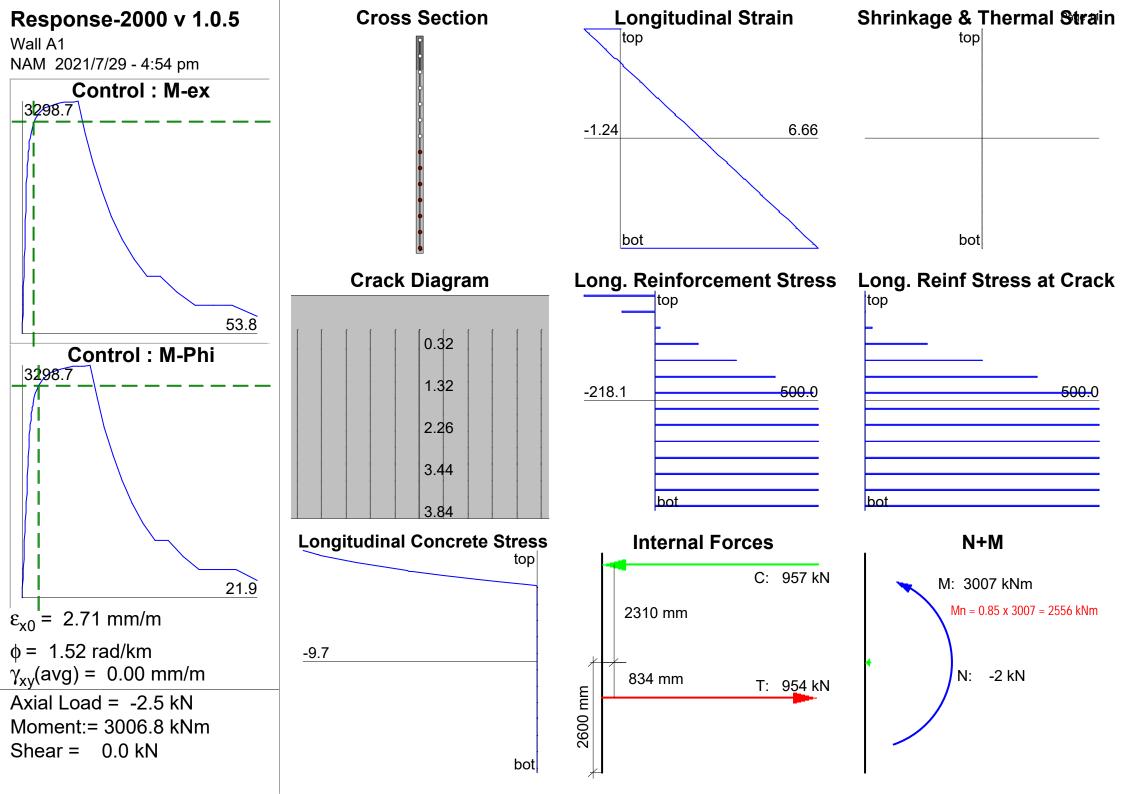
CONSULTING CIVIL & STRUCTURAL ENGINEERS

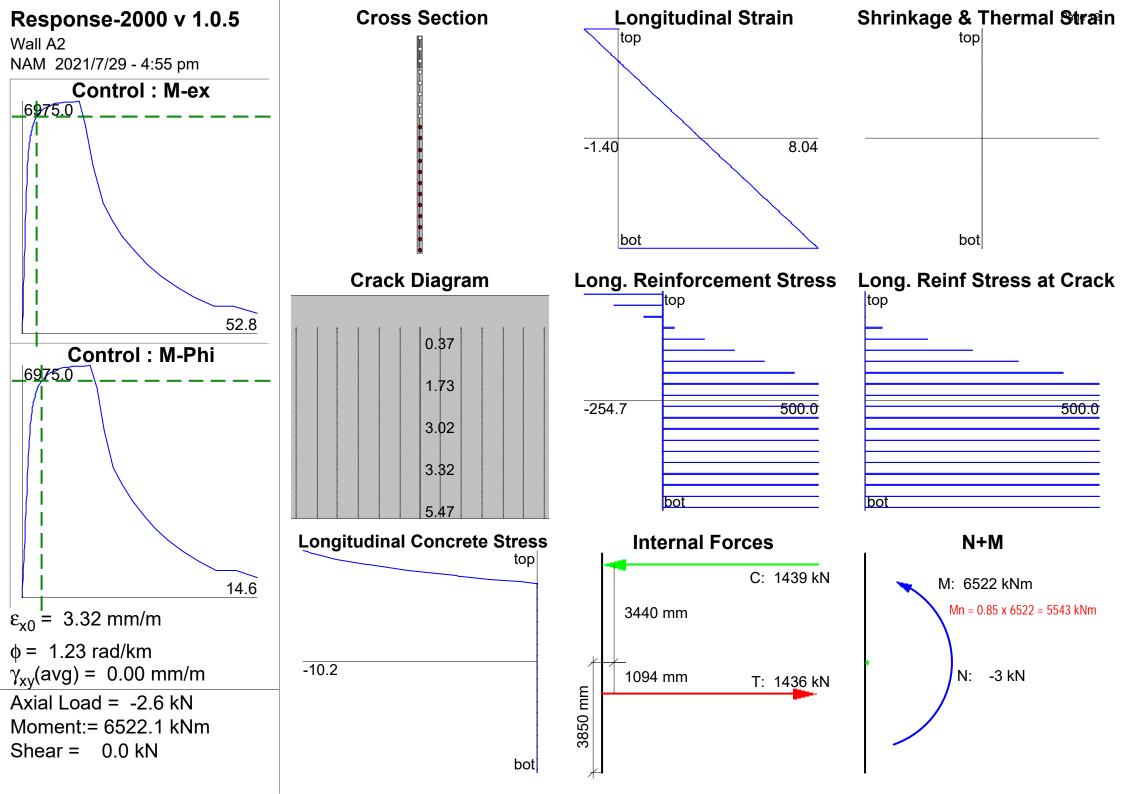
136 MORRINSVILLE ROAD

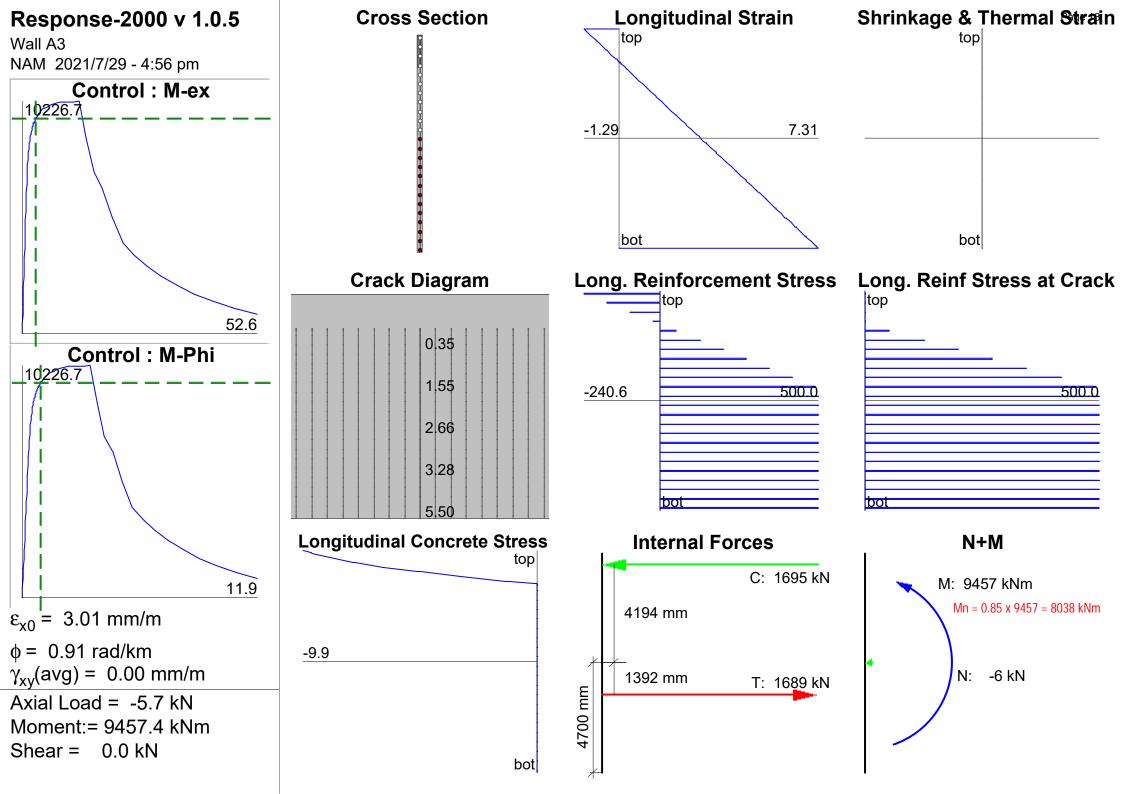

JOB

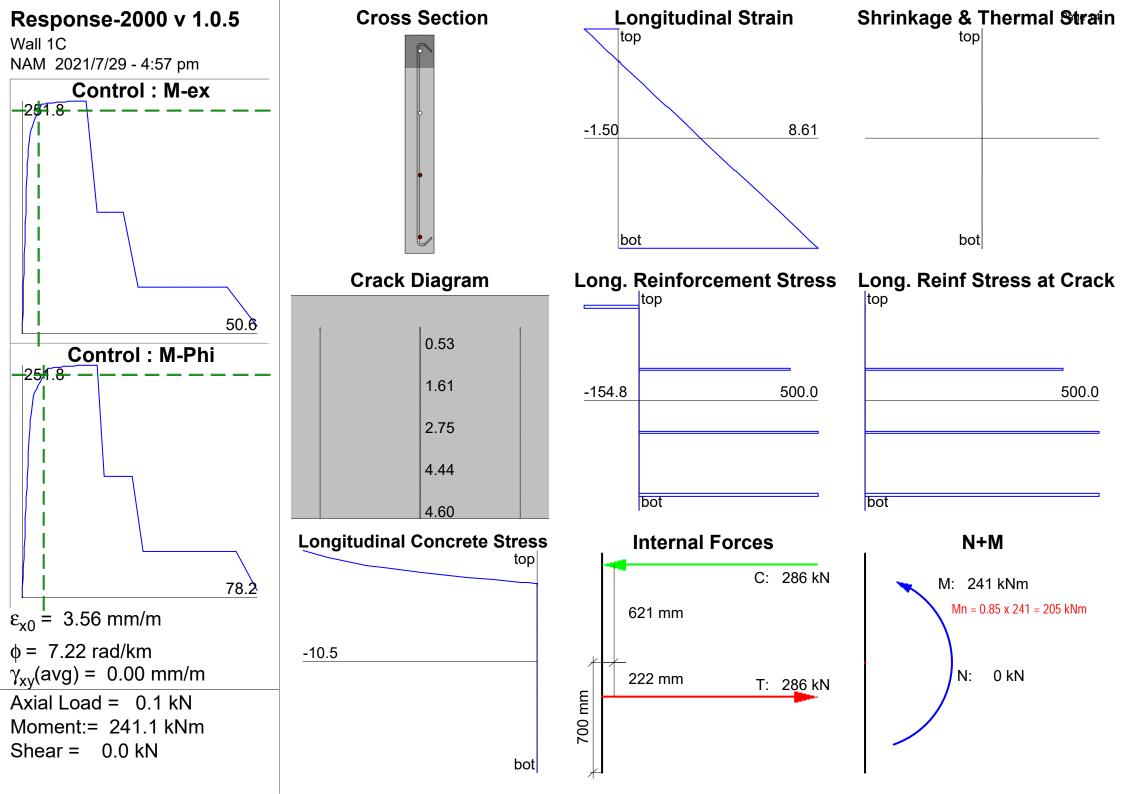
DATE 31.05.2021

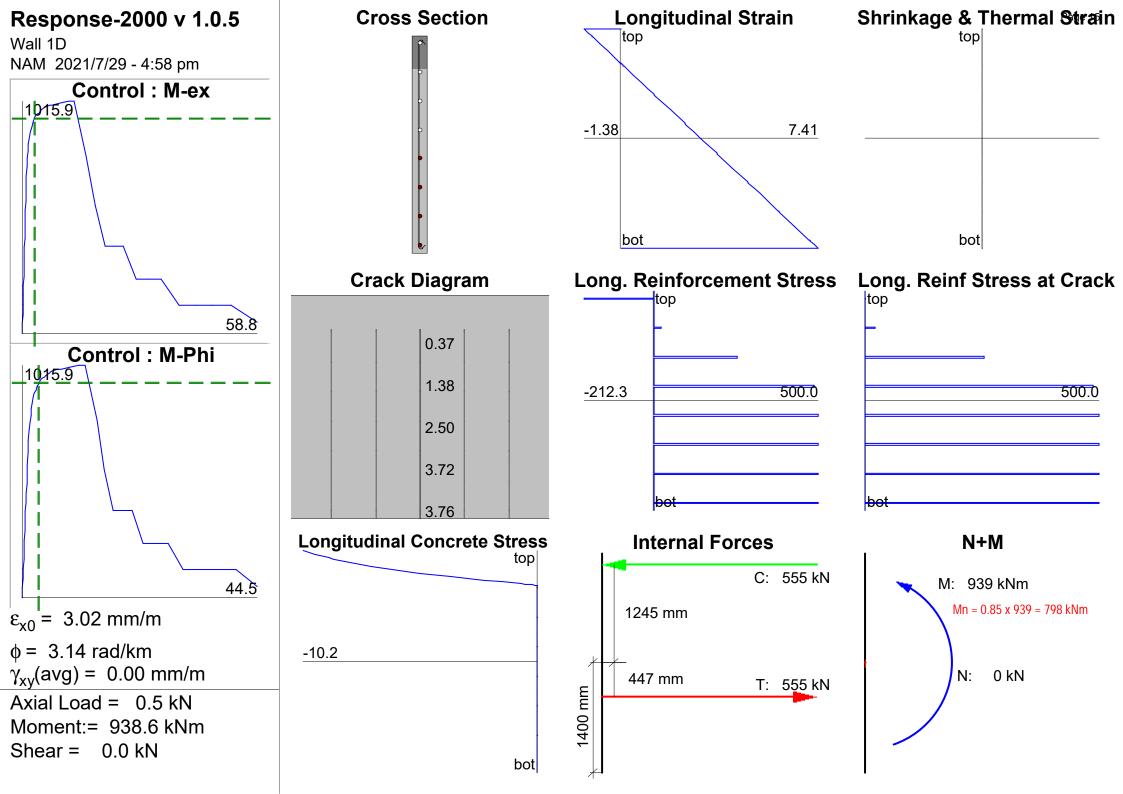
Notes:

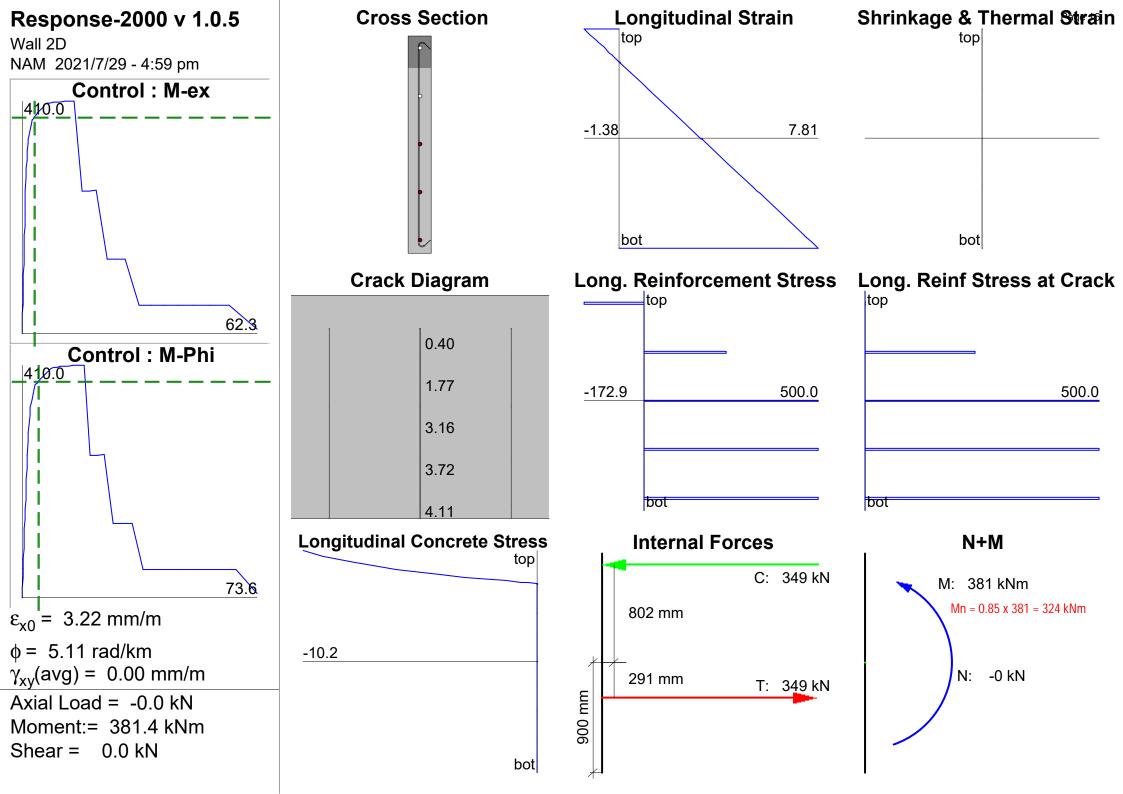

C:\Users\nick\Dropbox (Arnold and Johnstone)\A+J\1.0 Job Folder\12843 136 SH26, Cameron\1.0 Calcs\Rev 2 Design\Spreads14e56202843:55 pm Seismic Coefficient Spreadsheet Spectra 1 of 1

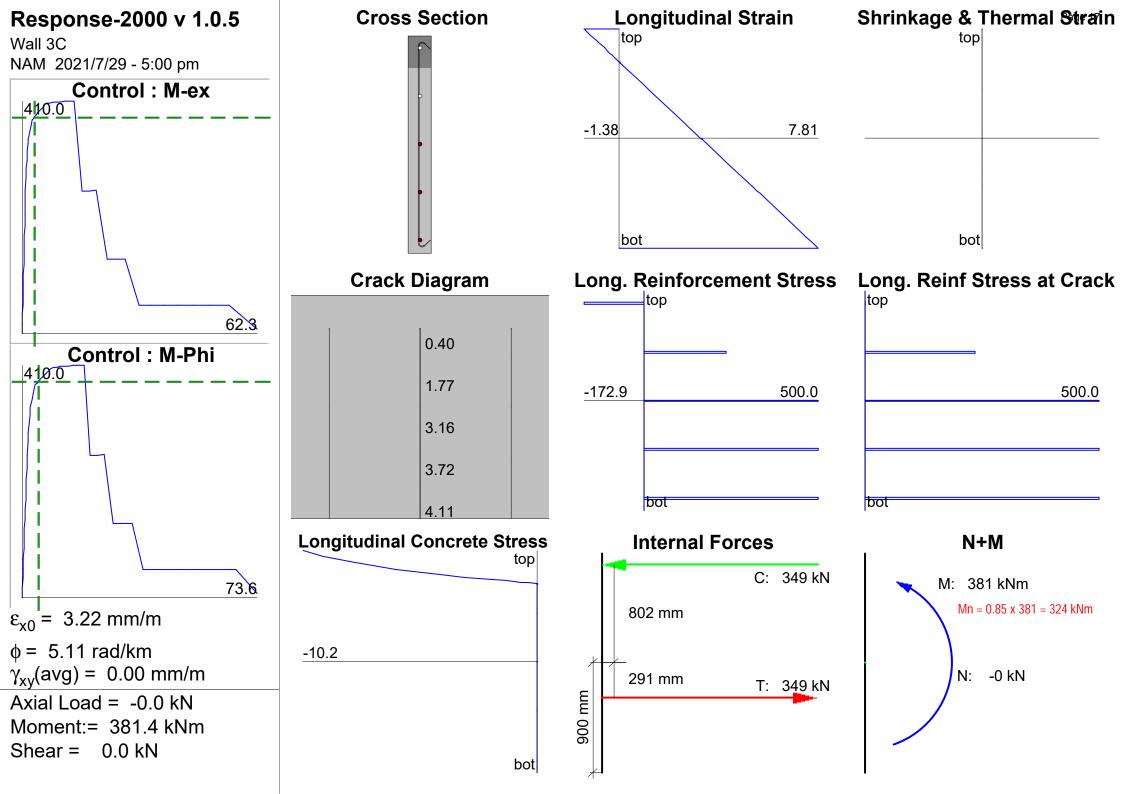


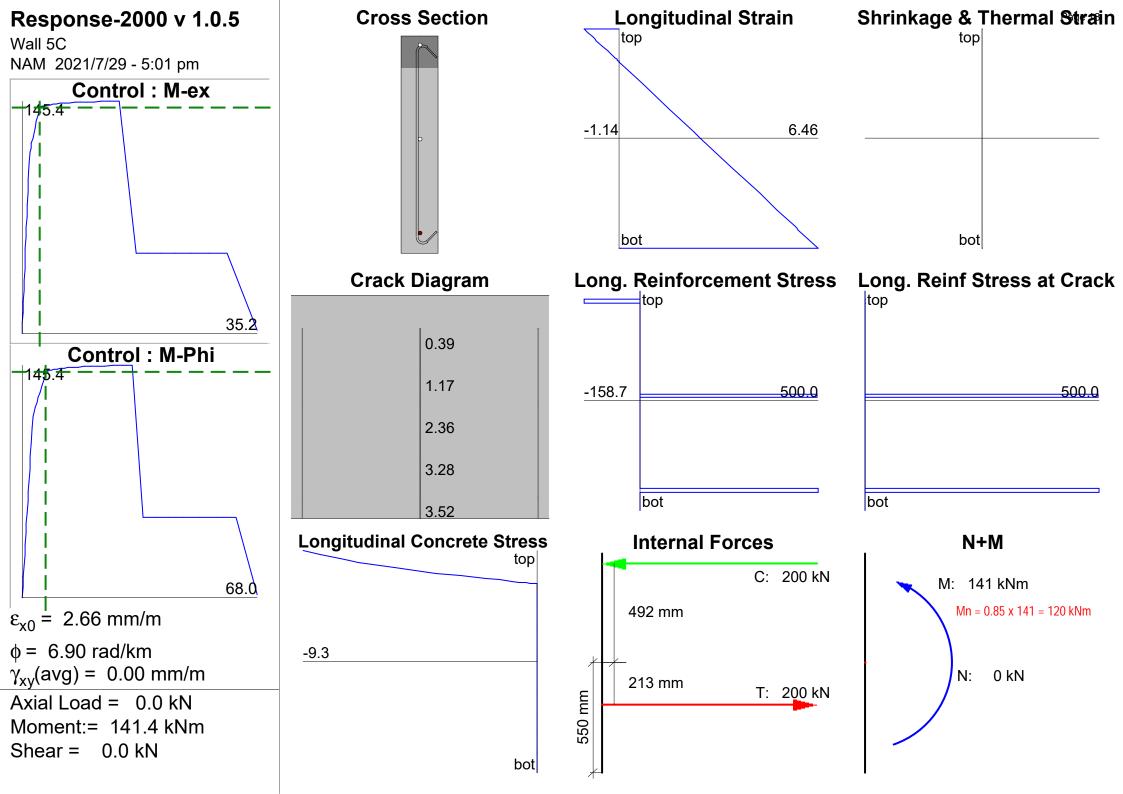

CONCRETE BLOCKWALL CAPACITY CALCULATIONS

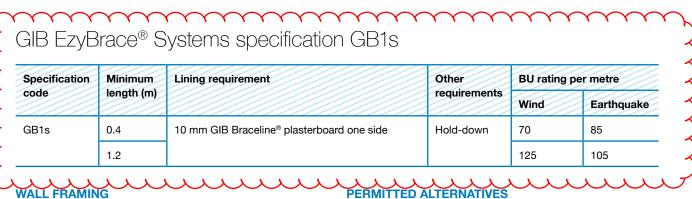

Masonry Compression Strengt	f' m	=	12	MPa
Stirrup Reinforcement Strength	f _{yt}	=	500	MPa
Shear Reduction Factor	φ	=	0.75	
Factor	C_3	=	0.8	MPa


Longitu	dinal D	Directi	ion																							
Wall	L _w	Bw	H_{e}	DI	S	n	D_{s}	S	n	V_{bm}	d	As	n	C	C	Vm	Av	Vs	φV _n	Vg	V _{glim}	Shear	Shear	Moment	Moment	Check
ID	mm	mm	mm	mm	mm	п	mm	mm	п	MPa	mm	mm ²	p _w	C ₁	C ₂	MPa	\rm{mm}^2	MPa	kN	MPa	MPa	kN	BU/m	kNm	kNm/m	Check
Wall A1	5200	190	3000	16	400	14	12	400	1	0.69	4160	2815	0.0036	0.2	1.26	1.01	113	0.6	949	1.20	1.56	949	183	2556	492	OK
Wall A2	7700	190	3000	16	400	20	12	400	1	0.69	6160	4021	0.0034	0.19	1.39	1.1	113	0.6	1485	1.27	1.56	1485	193	5543	720	OK
Wall B1	9400	190	3000	16	400	24	12	400	1	0.69	7520	4825	0.0034	0.19	1.45	1.13	113	0.6	1849	1.29	1.56	1849	197	8038	855	OK
Transve	rse Dii	rectio	n																							
Wall	L _w	B _w	H _e	D	s	n	Ds	s	n	V _{bm}	d	A _s	n	C	C.	V _m	A _v	Vs	φV _n	Vg	V _{glim}	Shear	Shear	Moment	Moment	Chock
	L _w mm			D _I mm	s mm	n	D _s mm	s mm	n	v _{bm} MPa	d mm	A _s mm ²	p _w	C ₁	C ₂	v _m MPa	A _v mm ²	0		v _g MPa	3	Shear kN	Shear BU/m	Moment kNm	Moment kNm/m	Check
Wall	L _w mm	B _w mm	H _e mm	mm	s mm 400	n 4	D _s mm 12	s mm 400	n 1	MPa		A _s mm ² 804	р _w 0.0038		-	v _m MPa 0.84		MPa			MPa					Check OK
Wall ID	L _w mm 1400	B _w mm 190	H _e mm 3000	mm 16		n 4 8			n 1 1	MPa	1120		0.0038		1.00		113	MPa 0.6	kN 229		MPa 1.56	kN	BU/m	kNm	kNm/m	Check
Wall ID Wall 1C	L _w mm 1400 2800	B _w mm 190 190	H _e mm 3000 3000	mm 16 16	400	n 4 8 5	12	400	n 1 1 1	MPa 0.69 0.69	1120 2240	804	0.0038	0.21	1.00 1.00	0.84	113 113	MPa 0.6 0.6	kN 229 457	1.07	MPa 1.56 1.56	kN 229	BU/m 163	kNm 205	kNm/m 146	Check OK
Wall ID Wall 1C Wall 1D	L _w mm 1400 2800 1800	B _w mm 190 190 190	H _e mm 3000 3000 3000	mm 16 16 16	400 400	n 4 8 5 5	12 12	400 400	n 1 1 1 1	MPa 0.69 0.69 0.69	1120 2240	804 1608	0.0038 0.0038	0.21 0.21	1.00 1.00 1.00	0.84 0.84	113 113 113	MPa 0.6 0.6 0.6	kN 229 457 293	1.07 1.07	MPa 1.56 1.56 1.56	kN 229 457	BU/m 163 163	kNm 205 798	kNm/m 146 285	Check OK OK









Wall framing to comply with,

PERMITTED ALTERNATIVES

The Bracing Unit ratings for system GB1s apply to 10 mm GIB Braceline®.

- NZBC B1 Structure
- NZBC B2 Durability

Steel framing dimensions and height as determined by Specific Engineering Design. C section studs shall have a minimum thickness of 0.75 mm and minimum nominal depth of 90 mm with 35 mm wide flanges.

BOTTOM PLATE FIXING

Timber floor

5mm washer as illustrated, fixed to timber floor framing using a 12 mm x 100 mm galvanized coach screw or 4 x 75mm Type 17 class 3 screws.

Concrete floor

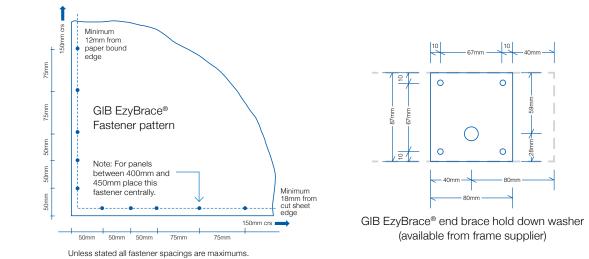
5mm washer as illustrated, fixed to the concrete slab using a proprietary concrete anchor with a minimum uplift capacity of 12kN taking into consideration concrete slab thickness (internal walls) and edge distance (external walls).

WALL LINING

- One layer of 10 mm GIB Braceline[®] plasterboard.
- Vertical or horizontal fixing permitted.
- Sheet joints shall be touch fitted.
- Use full height sheets where possible.

FASTENING THE LINING

Fasteners


32mm x 6g GIB® Grabber® Drywall Screws.

Fastener Centres

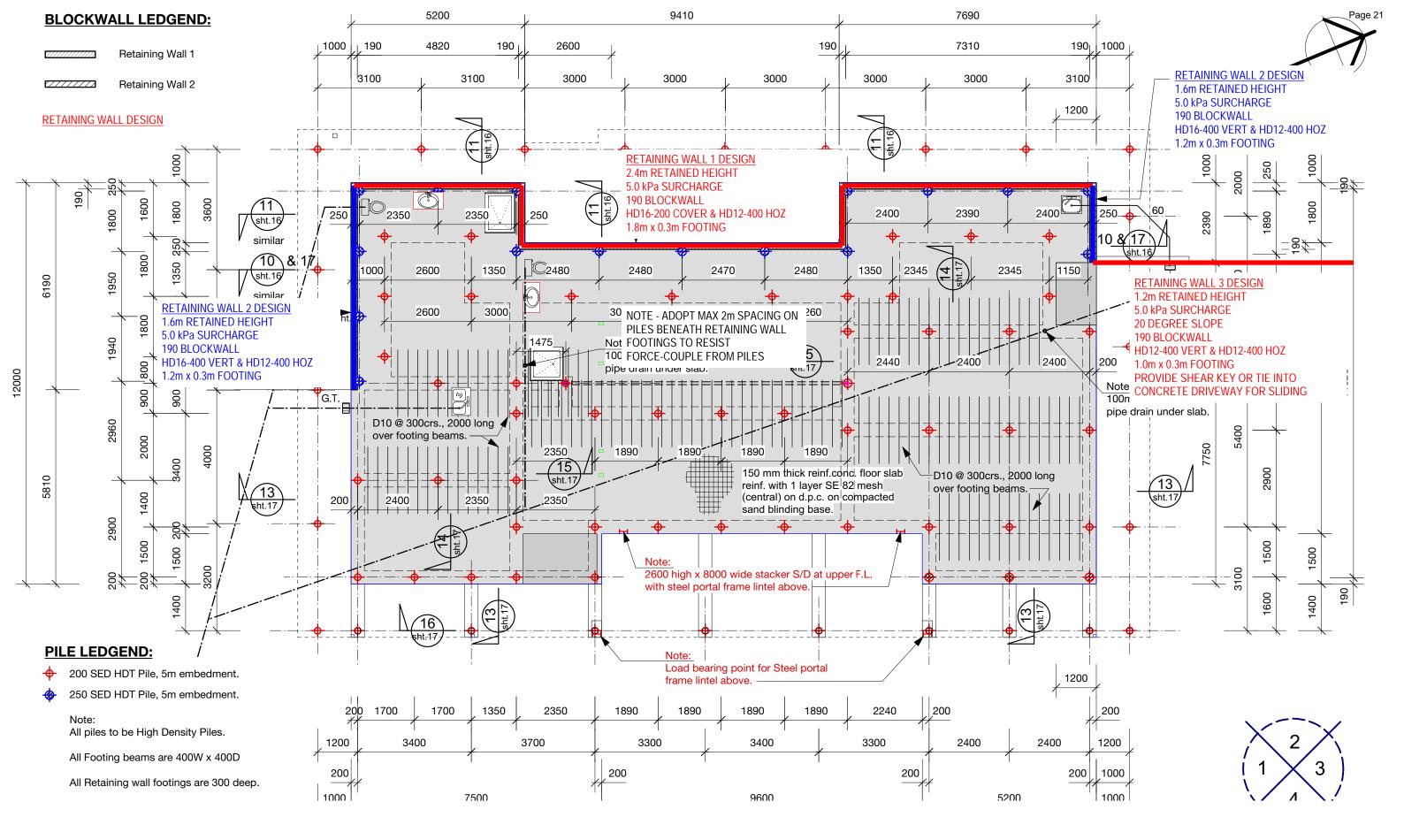
50,100,150,225,300mm from each corner and then 150mm thereafter around the perimeter of the bracing element. For vertically fixed sheets, place fasteners at 300mm centres to the intermediate sheet joints. For horizontally fixed sheets, place single fasteners to the sheet edge where it crosses the stud. Use daubs of GIBFix® adhesive at 300mm centres to intermediate studs. Place fasteners no closer than 12mm from paper bound sheet edges and 18mm from any sheet end or cut edge.

JOINTING

All fastener heads stopped and all sheet joints GIB® Joint Tape reinforced and stopped in accordance with the GIB® Site Guide.

In order for GIB® systems to perform as tested, all components must be installed exactly as prescribed. Substituting components produces an entirely different system and may seriously compromise performance. Follow the specifications. This specification sheet is issued in conjunction with the publication GIB EzyBrace® Systems

7



2. RETAINING WALL DESIGN

Ref: 12843

RETAINING WALL DESIGN

ARNOLD & OHNSTONE 2015 LTD CONSULTING CIVIL & STRUCTURAL ENGINEERS

JOB 136 MORRINSVILLE ROAD

CANTILEVER RETAINING WALL DESIGN

JOB No 12843

page by NAM

DATE 09.08.2021

COHESIONLESS SOIL

CANTILEVER RETAINING WALL DESIGN		COHESIONLI	ESS SUIL
Flexible Wall			
Wall Parameters			
Height of wall	H _w	<mark>2.4</mark> m	
Thickness of wall	T _{wall}	<mark>0.19</mark> m	
Length of Toe	L _{toe}	1.6 m	
Foundation thickness	T _{found}	0.3 m	
Length of heel	L _{heel}	0 m	
Depth of shear key	D _{key}	0 m	
Angle of backfill	β	0 °	
Soil friction angle	Ø	<mark>30</mark> °	
interface friction angle	δ	<mark>20</mark> °	
Wall slope		<mark>0</mark> °	
Soil unit weight	γ _{soil}	18 kN/m ³	
Concrete unit weight	γ _{wall}	24 kN/m ³	
Surcharge, factored gravity case, de stabilising			
(1.2G+0.4Q)	S _g	5 kPa	
Surcharge, factored EQ case, de stabilising			
(G+Eu+0.3Q)	S _g	5 kPa	
Surcharge, factored gravity case, stabilising (0.9G)	S _{gs}	0 kPa	
Effective stress angle of shearing (sliding)	Ø'	<mark>20</mark> °	
Width of footing	L _{foot}	1.79 m	
Total height of structure	H _T	2.7 m	
Weight of footing	W _{foot}	12.888 kn/m	
Weight of key	W _{key}	0 kn/m	
Weight of wall	W _{wall}	10.944 kn/m	
Weight of soil above heel	W _{soil}	0 kn/m	
Additional Weight (on wall)	W _{misc}	0 kn/m	
Additional weight lever arm for inertia force EQ			
Stability	Lever arm Fbase W _{misc}	0 m	
LRFD Parameters	Geotech Ult Bearing Pressure:	200 kPa Design bearing p	pressures
Resistance factor for bearing capacity, gravity case	Ø _{bc}	0.5	100 kPa
Resistance factor for bearing capacity, Eq case	Øeq _{bc}	<mark>0.8</mark>	160 kPa
Resistance factor for sliding, gravity case	Ø _{si}	0.9 <mark>.</mark>	
Resistance factor for passive earth pressure, gravity			
case	Ø _p	0.5	
Resistance factor for sliding, Eq case	Ø _{sl eq}	0.9	
Resistance factor for passive earth pressure, Eq case	Ø _{p eq}	0.5	
Load factor for self weight (stabilising)	G _{stab}	0.9 <mark>.</mark>	
Load factor for self weight (de-stabilising)	G _{destab}	1.2	
Load factor for earth pressure, gravity case (de-			
stabilising)	EP _{static}	1.5	
Top of wall case Pinned P, Unsupported U		U	
Active Earth Pressure Coeffcient Ka or Ko	ka	0.333	
Passive Earth Pressure coeffcient	Кр	5.5 Navfac DM7	

JOB 136 MORRINSVILLE ROAD

JOB No 12843

PAGE		
вү N	AM	

DATE 09.08.2021

Gravity Case - Stability		
Active thrust, soil weight component	$P_a=0.5 \text{ ka} \gamma H_T^2$	21.87 kn/m
horizontal component	Pah	20.55 kn/m
vertical component	Pav	7.48 kn/m
Active thrust surcharge component	P _{as} =Sg ka H _T	4.50 kn/m
horizontal component	Pash	4.23 kn/m
vertical component	Pasv	1.54 kn/m
Surcharge above heel	Pw=S _{gs} L _{heel}	0.00 kn/m
Factored moment from horizontal active pressure		
about bottom of toe	OTM	36.31 kn-m
Moment from vertical active pressure	RM	16.14 kn-m (-ve)
Moment from surcharge above heel	RM	0.00 kn-m
Factored moment from Self weight of wall and soil	RM	26.99 kn-m
Resultant moment	RM-OTM	6.82 kn-m
Ultimate factored horizontal load gravity case	1.5 Pa +1.5 Pas	37.17 kn/m
Vertical load on footing (wall and soil)	V _{total}	30.47 kn/m
Line of action from toe		0.22 m
effective footing width		0.45 m
Bearing pressure gravity case		68.02 kPa

.....

less than 100 kPa

Bearing pressure o.k

Gravity Case - Sliding			
Weight of soil under footing	W _{slide}	0	kn/m
Passive resistance	$P_p=0.5 \text{ kp } \gamma \text{ Tfound+Dkey}^2$	4.46	kn/m
horizontal component	Pph	4.19	kn/m
vertical component	Рру	1.52	kn/m
Friction under footing	Hs=($W_{slide*gstab}$ + V_{total} -ppv) tan Φ '	10.53	kn/m
Factored Gravity Sliding Resistance	Pp φp+Hs φsl	11.57	kn/m
			sliding Ngood
Bending moment in wall gravity case			
Active thrust, soil weight component	$P_a=0.5 \text{ ka} \gamma \text{ Hw}^2$	17.28	kn/m
Active thrust surcharge component	P _{as} =Sg ka Hw	4.00	kn/m
Factored moment from horizontal active pressure			
about top of footing (wall design)	OTM	27.94	
Depth of section	D		mm
Distance to centre of tension steel	d		mm
Width of section	Bw	1000	
Area of steel mm2/m			mm2
Steel yield strength	fy		Mpa
Concrete compressive strength	fc		Mpa
	а		mm
Flexure strength reduction factor	φ φ Mn	0.85	Kn-m
	7	33.56 ity BM in wall ok	
	Gravi	LY DIVI III WAII OK	

JOB 136 MORRINSVILLE ROAD

.....

Seismic Parameters

Seismic Parameters			
Passive earth coffcient Eq	KP eq	1	
Seismic coeffcient C(0)	CH(0) Z R	0.179	
Wd factor	Wd	0.7	wall displacement factor
Horizontal acceleration coeffcient	Kh=CH(0) Z R wd	0.125	
Wall is a flexible wall and Mononobe- Okabe equation			
used to calculate the earth pressure	K _{AE}	0.39	
Eq Active thrust increment flexible wall	Pae=0.5 Kae γ Ht ²	25.53	kn/m
horizontal component	Pah	23.99	kn/m
vertical component	Pav	8.73	kn/m
Eq Active thrust surcharge component	P _{aes} =Sg K Ht	5.25	kn/m
horizontal component	Pash	4.94	kn/m
vertical component	Pasv	1.80	kn/m
Surcharge above heel	Pw=S _{gs} L _{heel}	0.00	kn/m
Moment from horizontal EQ active pressure about			
bottom of toe	OTM	28.25	kn-m
Moment from structure inertia forces (including soil			
above the heel)	OTM		kn-m
Moment from vertical Eq pressure	RM	18.84	
Moment from surcharge above heel	RM		kn-m
Factored moment from Self weight of wall and soil	RM	29.98	
Resultant moment	RM-OTM	18.28	kn-m
Ultimate horizontal load Eq case		31.91	kn/m
Vertical load on footing (wall and soil)	V _{total}	34.36	kn/m
Line of action from toe		0.53	m
effective footing width		1.06	m
Bearing pressure Eq case		32.30	kPa
	less than 2	160 kPa	Bearing pressure o.k
Earthquake Case - Sliding short term			
Passive resistance	$P_p=0.5 \text{ kpeq } \gamma (\text{ Tfound+Dkey})^2$	0.81	kn/m
Friction under footing	Hs=(W_{slide^*gstab} +V $_{total}$ -ppv) tan δ'	12.51	$kn/m \delta' = \Phi'$
Factored EQ Sliding Resistance	Pp dp+Hs dsl	11.66	,
			sliding Ngood
Bending moment in wall Eq case			

BY

PAGE

DATE 09.08.2021

NAM

Bending moment in wall Eq case

Bending moment in wall Eq case			
Eq Active thrust increment	$P_a=0.5$ kae γ Hw ²	20.17 k	kn/m
Eq Active thrust increment surcharge component	P _{as} =Sg kh Hw	4.67 k	kn/m
Moment from structure inertia forces	OTM	1.65 k	kn-m
Factored moment from horizontal Eq thrust about			
base of wall	OTM	23.38 k	kn-m
Depth of section	D	<mark>. 190</mark> r	nm
Distance to centre of tension steel	d	<mark>95</mark> r	nm
Width of section	Bw	<mark>1000</mark> r	nm
Area of steel mm2/m	as	1005 r	mm2
Steel yield strength	fy	500 N	Ира
Concrete compressive strength	f'c	18 N	Ира
	а	32.84 r	nm
Flexure strength reduction factor	φ	0.85	
	φMn	33.56 k	≺n-m
	E	EQ BM in wall ok	

12843

PAGE NAM BY

09.08.2021 DATE

DA

CANTILEVER RETAINING WALL DESIGN

ARNOLD &

136 MORRINSVILLE ROAD

JOB

205 LTD CONSULTING CIVIL & STRUCTURAL ENGINEERS

COHESIONLESS SOIL

		CONLINELISS SOIL	
Flexible Wall			
Wall Parameters			
Height of wall	H _w	1.6 m	
Thickness of wall	T _{wall}	0.19 m	
Length of Toe	L _{toe}	<mark>1</mark> m	
Foundation thickness	T _{found}	<mark>0.3</mark> m	
Length of heel	L _{heel}	<mark>0</mark> m	
Depth of shear key	D _{key}	<mark>0</mark> m	
Angle of backfill	β	0 °	
Soil friction angle	Ø	<mark>30</mark> °	
interface friction angle	δ	20 °	
Wall slope		<mark>0</mark> °	
Soil unit weight	γ _{soil}	18 kN/m ³	
Concrete unit weight	Υwall	24 kN/m ³	
Surcharge, factored gravity case, de stabilising			
(1.2G+0.4Q)	S _g	5 kPa	
Surcharge, factored EQ case, de stabilising			
(G+Eu+0.3Q)	S _g	5 kPa	
Surcharge, factored gravity case, stabilising (0.9G)	S _{gs}	0 kPa	
Effective stress angle of shearing (sliding)	Ø'	<mark>20</mark> °	
Width of footing	L _{foot}	1.19 m	
Total height of structure	Η _T	1.9 m	
Weight of footing	W _{foot}	8.568 kn/m	
Weight of key	W _{key}	0 kn/m	
Weight of wall	W _{wall}	7.296 kn/m	
Weight of soil above heel	W _{soil}	0 kn/m	
Additional Weight (on wall)	W _{misc}	<mark>0</mark> kn/m	
Additional weight lever arm for inertia force EQ			
Stability	Lever arm Fbase W _{misc}	<mark>0</mark> m	
LRFD Parameters	Geotech Ult Bearing Pressure:	200 kPa Design bearing pressures	
Resistance factor for bearing capacity, gravity case	Ø _{bc}	0.5 100 kl	Pa
Resistance factor for bearing capacity, Eq case	Øeq _{bc}	0.8 160 kl	Pa
Resistance factor for sliding, gravity case	Ø _{si}	0.9	
Resistance factor for passive earth pressure, gravity			
case	Øp	0.5	
Resistance factor for sliding, Eq case	Ø _{sl eq}	0.9	
Resistance factor for passive earth pressure, Eq case	Ø _{p eq}	0.5	
Load factor for self weight (stabilising)	G _{stab}	0.9	
Load factor for self weight (de-stabilising)	G _{destab}	<mark>1.2</mark>	
Load factor for earth pressure, gravity case (de-			
stabilising)	EP _{static}	1.5	
Top of wall case Pinned P, Unsupported U		U	
Active Earth Pressure Coeffcient Ka or Ko	ka	0.333	
Passive Earth Pressure coeffcient	Кр	5.5 Navfac DM7	

136 MORRINSVILLE ROAD JOB

12843 JOB No .

PAGE		
	NAM	

BY 09.08.2021

DATE 07.00.2021			
DALLE			

Gravity Case - Stability		
Active thrust, soil weight component	$P_a=0.5 \text{ ka} \gamma H_T^2$	10.83 kn/m
horizontal component	Pah	10.18 kn/m
vertical component	Pav	3.70 kn/m
Active thrust surcharge component	$P_{as}=Sg ka H_T$	3.17 kn/m
horizontal component	Pash	2.98 kn/m
vertical component	Pasv	1.08 kn/m
Surcharge above heel	Pw=S _{gs} L _{heel}	0.00 kn/m
Factored moment from horizontal active pressure		
about bottom of toe	OTM	13.91 kn-m
Moment from vertical active pressure	RM	5.70 kn-m (-ve)
Moment from surcharge above heel	RM	0.00 kn-m
Factored moment from Self weight of wall and soil	RM	11.69 kn-m
Resultant moment	RM-OTM	3.48 kn-m
Ultimate factored horizontal load gravity case	1.5 Pa +1.5 Pas	19.73 kn/m
Vertical load on footing (wall and soil)	V _{total}	19.06 kn/m
Line of action from toe		0.18 m
effective footing width		0.36 m
_ · ·		

Bearing pressure gravity case 52.27 kPa less than 100 kPa Bearing pressure o.k Gravity Case - Sliding 0 kn/m Weight of soil under footing W_{slide} $P_p=0.5 \text{ kp } \gamma \text{ Tfound+Dkey}^2$ Passive resistance 4.46 kn/m 4.19 kn/m horizontal component Pph vertical component Ррv 1.52 kn/m $\mathsf{Hs}{=}(\mathsf{W}_{\mathsf{slide}^*\mathsf{gstab}}{+}\mathsf{V}_{\mathsf{total}}{-}\mathsf{ppv}) \tan \Phi'$ 6.38 kn/m Friction under footing Factored Gravity Sliding Resistance 7.84 kn/m sliding Ngood 4:.

Bending moment in wall gravity case			
Active thrust, soil weight component	$P_a=0.5 \text{ ka} \gamma \text{Hw}^2$	7.68	kn/m
Active thrust surcharge component	P _{as} =Sg ka Hw	2.67	kn/m
Factored moment from horizontal active pressure			
about top of footing (wall design)	OTM	9.34	kn-m
Depth of section	D	190	mm
Distance to centre of tension steel	d	95	mm
Width of section	Bw	1000	mm
Area of steel mm2/m	as	502	mm2
Steel yield strength	fy	500	Мра
Concrete compressive strength	f'c	12	Мра
	а	25	mm
Flexure strength reduction factor	ϕ	0.85	
	<i>φ</i> Mn	17.64	Kn-m

Gravity BM in wall ok

JOB 136 MORRINSVILLE ROAD

Seismic Parameters

Width of section

Area of steel mm2/m

Concrete compressive strength

Flexure strength reduction factor

Steel yield strength

Seisinic Parameters			
Passive earth coffcient Eq	KP eq	1	
Seismic coeffcient C(0)	CH(0) Z R	0.179	
Wd factor	Wd	0.7	wall displacement factor
Horizontal acceleration coeffcient	Kh=CH(0) Z R wd	0.125	
Wall is a flexible wall and Mononobe- Okabe equation			
used to calculate the earth pressure	K _{AE}	0.39	
Eq Active thrust increment flexible wall	Pae=0.5 Kae γ Ht ²	12.64	kn/m
horizontal component	Pah	11.88	kn/m
vertical component	Pav	4.32	kn/m
Eq Active thrust surcharge component	P _{aes} =Sg K Ht	3.70	kn/m
horizontal component	Pash	3.47	kn/m
vertical component	Pasv	1.26	kn/m
Surcharge above heel	Pw=S _{gs} L _{heel}	0.00	kn/m
Moment from horizontal EQ active pressure about	-		
bottom of toe	OTM	10.82	kn-m
Moment from structure inertia forces (including soil			
above the heel)	OTM	1.17	kn-m
Moment from vertical Eq pressure	RM	6.65	
Moment from surcharge above heel	RM	0.00	kn-m
Factored moment from Self weight of wall and soil	RM	12.99	kn-m
Resultant moment	RM-OTM	7.65	kn-m
	_		
Ultimate horizontal load Eq case		17.34	
Vertical load on footing (wall and soil)	V _{total}	21.45	,
Line of action from toe		0.36	
effective footing width	_	0.71	
Bearing pressure Eq case		30.09	
	less than 16	50 kPa	Bearing pressure o.k
Earthquake Case - Sliding short term			
Passive resistance	$P_p=0.5 \text{ kpeq } \gamma (\text{ Tfound+Dkey})^2$	0.81	kn/m
Friction under footing	Hs=(W _{slide*gstab)} +V _{total} -ppv) tan δ'	7 91	kn/m δ' = Φ'
Factored EQ Sliding Resistance	Pp φp+Hs φsl		kn/m
ractored EQ shung resistance	r þ ψρ+ι is ψsi		sliding Ngood
Bending moment in wall Eq case			
Eq Active thrust increment	$P_a=0.5$ kae γ Hw ²	8.96	kn/m
Eq Active thrust increment surcharge component	P _{as} =Sg kh Hw		kn/m
Moment from structure inertia forces	OTM	0.73	•
Factored moment from horizontal Eq thrust about	311	0.75	
base of wall	OTM	8,00	kn-m
Depth of section	D	190	
Distance to centre of tension steel	d		mm
		1000	

12843

NAM

Bw

as

fy

f'c

а

φ φMn 1000 mm

502 mm2

500 Mpa

12 Mpa 24.61 mm

17.64 Kn-m

0.85

EQ BM in wall ok

PAGE

09.08.2021

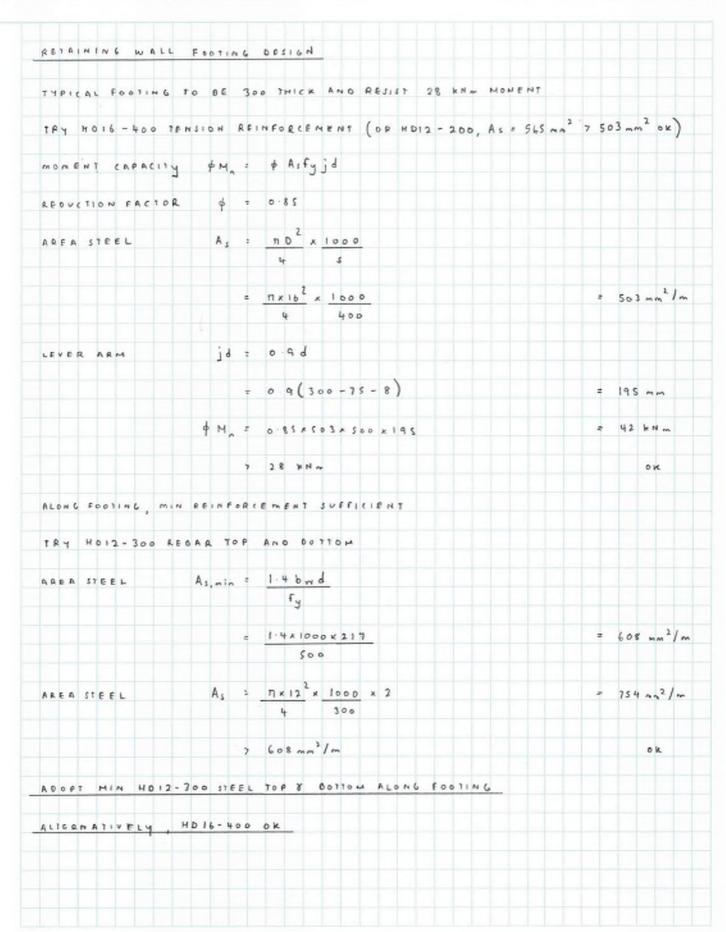
JOB No .

BY

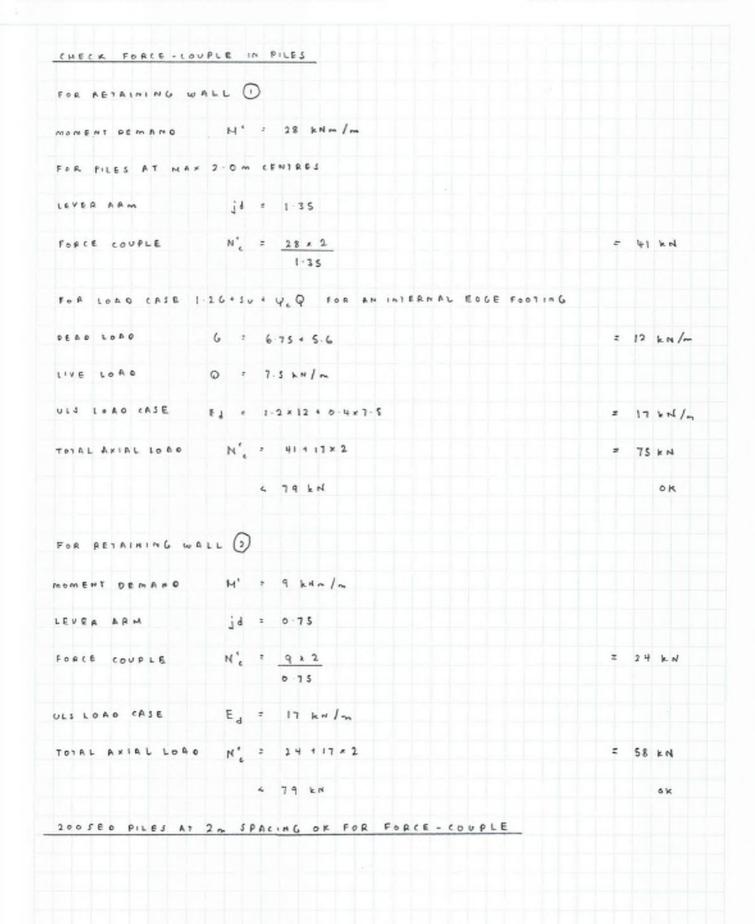
DATE

Page 28

JOB 136 MORRINSVILLE ROAD


DATE .31 .05 . 2 . 21

RETAINING WALL FOOTING DESIGN TYPICAL FOOTING TO BE 300 THICK AND RESIST 28 KH. MONENT TRY MOIS - 400 TENSION REINFORCEMENT MOMENT CAPACITY \$M = \$ Asfyjd 28.0 + 4 REDUCTION FACTOR ARFA STEEL 5 Lę = 503 mm 2/m E TIXI6 × 1000 400 4 jd = 0.9d LEVER ARM = 0 9 (300 - 75 - 8) = 195 mm e 42 knm + M = 0.85 × 503 × 500 × 195 0 16 7 28 ×N~ ALONG FOOTING, MIN REINFORCEMENT SUFFICIENT TRY HO12-300 RECAR TOP AND BOTTOM Asmin = 1.4 brid AREA STOEL fy = 608 mm 2/m e 1.4×1000×217 500 A. = 7×12 × 1000 × 2 = 754 mm2/m AREA STEEL 300 OK > 608 mm 2/m ADOPT MIN HO12-300 STEEL TOP & COTTOM ALONG FOOTING ALICANATIVELY HDIG-400 OK


JOB 136 MARRINS FILLE ROAD

JC	DB N	lo .!!	84	3		 	 	
P	AGE					 	 	
B	Y	N .	A.M.			 	 	
D	ATE	09	0.8	. 2	021	 	 	

JOB 136 MORRINSVILLE ROAD

Page 31

JOB 136 MORRINSVILLE ROAD

CANTILEVER RETAINING WALL DESIGN

JOB No 12843

раде byNAM

DATE 09.08.2021

COHESIONLESS SOIL

CANTILEVER RETAINING WALL DESIGN			COHESIONLESS SOIL
Flexible Wall			
Wall Parameters			
Height of wall	Hw	1.2	m
Thickness of wall	T _{wall}	0.19	m
Length of Toe	L _{toe}	0.8	m
Foundation thickness	T _{found}	0.3	m
Length of heel	L _{heel}	0	m
Depth of shear key	D _{key}	0	m
Angle of backfill	β	20	°
Soil friction angle	Ø	30	o
interface friction angle	δ	20	
Wall slope		0	
Soil unit weight	γ _{soil}	18	kN/m ³
Concrete unit weight	γ _{wall}	24	kN/m ³
Surcharge, factored gravity case, de stabilising			
(1.2G+0.4Q)	Sg	5	kPa
Surcharge, factored EQ case, de stabilising			
(G+Eu+0.3Q)	S _g	5	kPa
Surcharge, factored gravity case, stabilising (0.9G)	S _{gs}		kPa
Effective stress angle of shearing (sliding)	Ø'	20	0
Width of footing	L _{foot}	0.99	m
Total height of structure	Η _T	1.5	m
Weight of footing	W _{foot}	7.128	kn/m
Weight of key	W _{key}	0	kn/m
Weight of wall	W _{wall}	5.472	kn/m
Weight of soil above heel	W _{soil}	0	kn/m
Additional Weight (on wall)	W _{misc}	0	kn/m
Additional weight lever arm for inertia force EQ			
Stability	Lever arm Fbase W _{misc}		m
LRFD Parameters	Geotech Ult Bearing Pressure:		Design bearing pressures
Resistance factor for bearing capacity, gravity case	Ø _{bc}	0.5	100 kPa
Resistance factor for bearing capacity, Eq case	Øeq _{bc}	0.8	160 kPa
Resistance factor for sliding, gravity case	Ø _{sl}	0.9	
Resistance factor for passive earth pressure, gravity			
case	Øp	0.5	
Resistance factor for sliding, Eq case	Ø _{sl eq}	0.9	
Resistance factor for passive earth pressure, Eq case	Ø _{p eq}	0.5	
Load factor for self weight (stabilising)	G _{stab}	0.9	
Load factor for self weight (de-stabilising)	G _{destab}	1.2	
Load factor for earth pressure, gravity case (de-			
stabilising)	EP _{static}	1.5	
Top of wall case Pinned P, Unsupported U		U	
Active Earth Pressure Coeffcient Ka or Ko	ka	0.441	
Passive Earth Pressure coeffcient	Кр <mark></mark>	5.5	Navfac DM7

Gravity Case - Stability

JOB 136 MORRINSVILLE ROAD

JOB No 12843 PAGE BY NAM DATE 09.08.2021

Active thrust, soil weight component	$P_a=0.5 \text{ ka} \gamma H_T^2$	8.93 kn/m
horizontal component	Pah	8.39 kn/m
vertical component	Pav	3.05 kn/m
Active thrust surcharge component	P_{as} =Sg ka H _T	3.31 kn/m
horizontal component	Pash	3.11 kn/m
vertical component	Pasv	1.13 kn/m
Surcharge above heel	Pw=S _{gs} L _{heel}	0.00 kn/m
Factored moment from horizontal active pressure		
about bottom of toe	OTM	9.79 kn-m
Moment from vertical active pressure	RM	4.14 kn-m (-ve)
Moment from surcharge above heel	RM	0.00 kn-m
Factored moment from Self weight of wall and soil	RM	7.49 kn-m
Resultant moment	RM-OTM	1.85 kn-m
Ultimate factored horizontal load gravity case	1.5 Pa +1.5 Pas	17.25 kn/m
Vertical load on footing (wall and soil)	V _{total}	15.53 kn/m
Line of action from toe		0.12 m
effective footing width		0.24 m
Bearing pressure gravity case		65.31 kPa

less than 100 kPa

Bearing pressure o.k

Gravity Case - Sliding			
Weight of soil under footing	W _{slide}	0	kn/m
Passive resistance	$P_p=0.5 \text{ kp } \gamma \text{ Tfound+Dkey}^2$	4.46	kn/m
horizontal component	Pph	4.19	kn/m
vertical component	Ppv	1.52	kn/m
Friction under footing	Hs=($W_{slide*gstab}$)+ V_{total} -ppv) tan Φ '	5.10	kn/m
Factored Gravity Sliding Resistance	Pp	6.68	kn/m
			sliding Ngood
Bending moment in wall gravity case			
Active thrust, soil weight component	$P_a=0.5 \text{ ka} \gamma \text{ Hw}^2$	5.72	kn/m
Active thrust surcharge component	P _{as} =Sg ka Hw	2.65	kn/m
Factored moment from horizontal active pressure			
about top of footing (wall design)	OTM	5.81	kn-m
Depth of section	D	190	mm
Distance to centre of tension steel	d	95	mm
Width of section	Bw	1000	mm
Area of steel mm2/m	as	282	mm2
Steel yield strength	fy	500	Мра
Concrete compressive strength	f'c	12	Мра
	а	14	mm
Flexure strength reduction factor	ϕ	0.85	
	φMn	10.56	Kn-m
	Gravit	ty BM in wall ok	

Gravity BM in wall ok

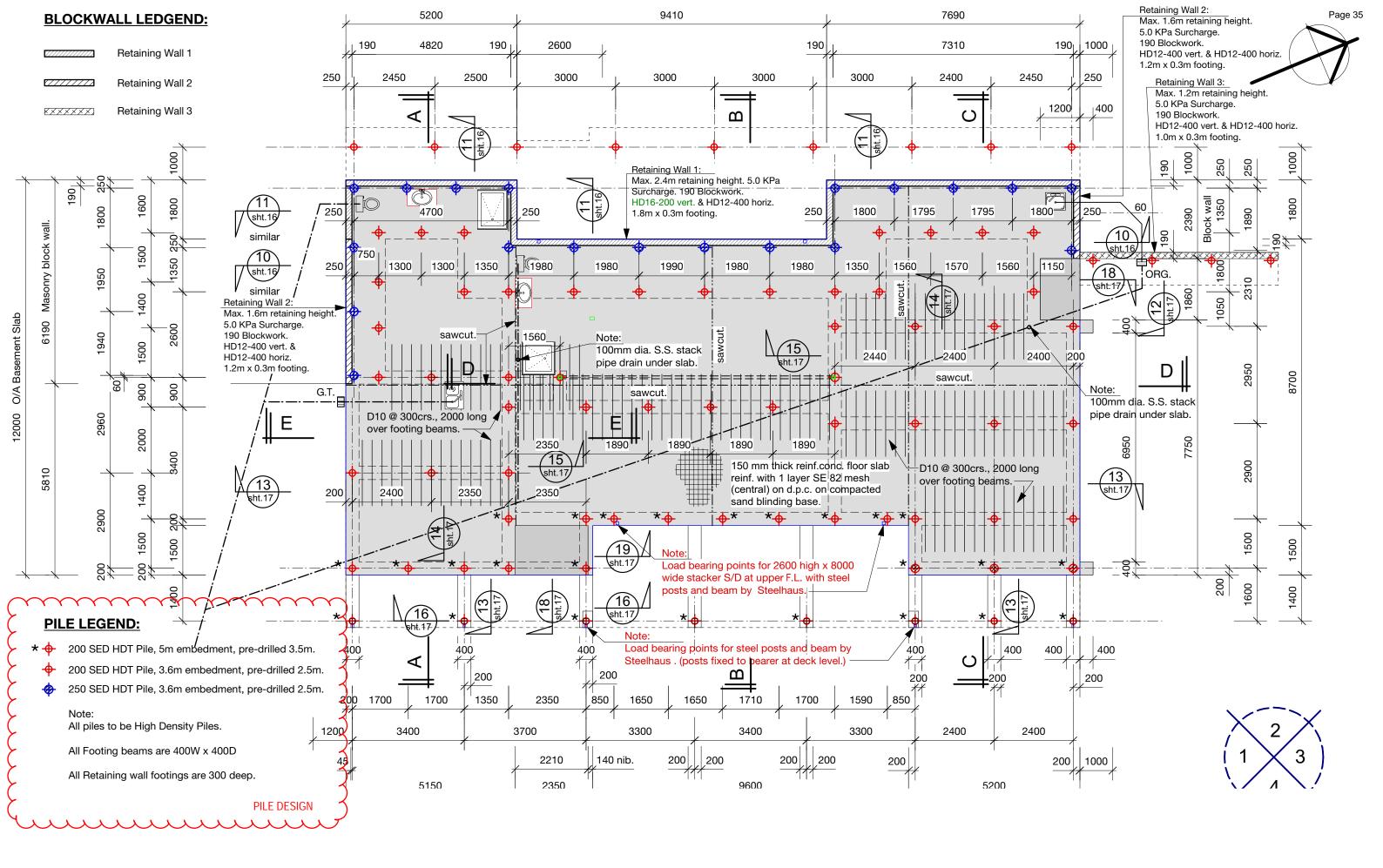
JOB 136 MORRINSVILLE ROAD

Seismic Parameters

JOB No	12843
PAGE	
BY	NAM
DATE	09.08.2021

Passive earth coffcient Eq	KP eq	1	
Seismic coeffcient C(0)	CH(0) Z R	0.179	
Wd factor	Wd	0.7	wall displacement factor
Horizontal acceleration coeffcient	Kh=CH(0) Z R wd	0.125	
Wall is a flexible wall and Mononobe- Okabe equation			
used to calculate the earth pressure	K _{AE}	0.66	
Eq Active thrust increment flexible wall	Pae=0.5 Kae γ Ht ²	13.32	kn/m
horizontal component	Pah	12.52	kn/m
vertical component	Pav	4.56	kn/m
Eq Active thrust surcharge component	P _{aes} =Sg K Ht	4.93	kn/m
horizontal component	Pash	4.64	kn/m
vertical component	Pasv	1.69	kn/m
Surcharge above heel	Pw=S _{gs} L _{heel}	0.00	kn/m
Moment from horizontal EQ active pressure about	-		
bottom of toe	OTM	9.74	kn-m
Moment from structure inertia forces (including soil			
above the heel)	OTM	0.75	kn-m
Moment from vertical Eq pressure	RM	6.18	
Moment from surcharge above heel	RM	0.00	kn-m
Factored moment from Self weight of wall and soil	RM	8.33	kn-m
Resultant moment	RM-OTM	4.02	kn-m
Ultimate horizontal load Eq case		18.73	kn/m
Vertical load on footing (wall and soil)	V _{total}	18.84	kn/m
Line of action from toe		0.21	m
effective footing width		0.43	m
Bearing pressure Eq case		44.17	kPa
	less than	160 kPa	Bearing pressure o.k

Earthquake Case - Sliding short term


Passive resistance	$P_p=0.5 \text{ kpeq } \gamma (\text{ Tfound+Dkey})^2$	0.81 kn/m
Friction under footing	Hs=($W_{slide*gstab}$)+ V_{total} -ppv) tan δ '	6.86 kn/m δ' = Φ '
Factored EQ Sliding Resistance	Pp φp+Hs φsl	6.58 kn/m
		sliding Ngood
Bending moment in wall Eq case		
Eq Active thrust increment	$P_a=0.5 \text{ kae } \gamma \text{ Hw}^2$	8.53 kn/m
Eq Active thrust increment surcharge component	P _{as} =Sg kh Hw	3.95 kn/m
Moment from structure inertia forces	OTM	0.41 kn-m
Factored moment from horizontal Eq thrust about		
base of wall	OTM	6.19 kn-m
Depth of section	D	<mark>190</mark> mm
Distance to centre of tension steel	d	95 mm
Width of section	Bw	1000 mm
Area of steel mm2/m	as	282 mm2
Steel yield strength	fy	500 Mpa
Concrete compressive strength	f'c	12 Mpa
	а	13.82 mm
Flexure strength reduction factor	ϕ	0.85
	φMn	10.56 Kn-m
	EQI	BM in wall ok

3. PILE DESIGN

Ref: 12843

JOB 5426 136 MORRINSTILLE ROAD

FILE DESIGN BASE MENT TO BE SUPPORTED BY DRIVEN TIMBER PILES APOPT MIN 200 DIA + 7.6 DEEP PILES. AJ PER TITUS REPORT, ROOPT & COMESION LESS SOIL (SAMOS) REFER TO THE ATTACHED SPREADSHEET FOR FULL CALCULATIONS FILE CAPACITY &H. P 80 KN CHECK CAPACITY USING HILFY FORMULA \$H, P \$ WHR 5 + 5/2 FOR A SOD Kg WEIGHT, Im DROP, ISon SET \$4. SKN REFER TO ATTACHED HILEY CALCULATIONS 7 80 KN PILES SUPPORTING BASEMENT FLOOR ONLY TRY PILES AT MAX 2.5 m SPACING Gricor = 30×0-15×25 = 11-25 KN/m ORAD LOAD FLOOR Green = 0.4×0.4×25 DEAD LODD BEAM = 4 kN/m Q = 3.0 × 2.5 = 15 kN/m LIVE LOAD FLOOR Ed 7 1-26+1-50 ULS LOAD CASE = (1.2*(11.25+4)+1.5*7.5) + 2.5 74 KN 4 80 kN ok ADOPT PILES AT MAR 2 Sm SPACING PILES ON EASTERN BUILDING PERIMPIER CONSIDER WORST CASE LOADING ON EASTERN PERIMETER OF BUILDING

Page 37

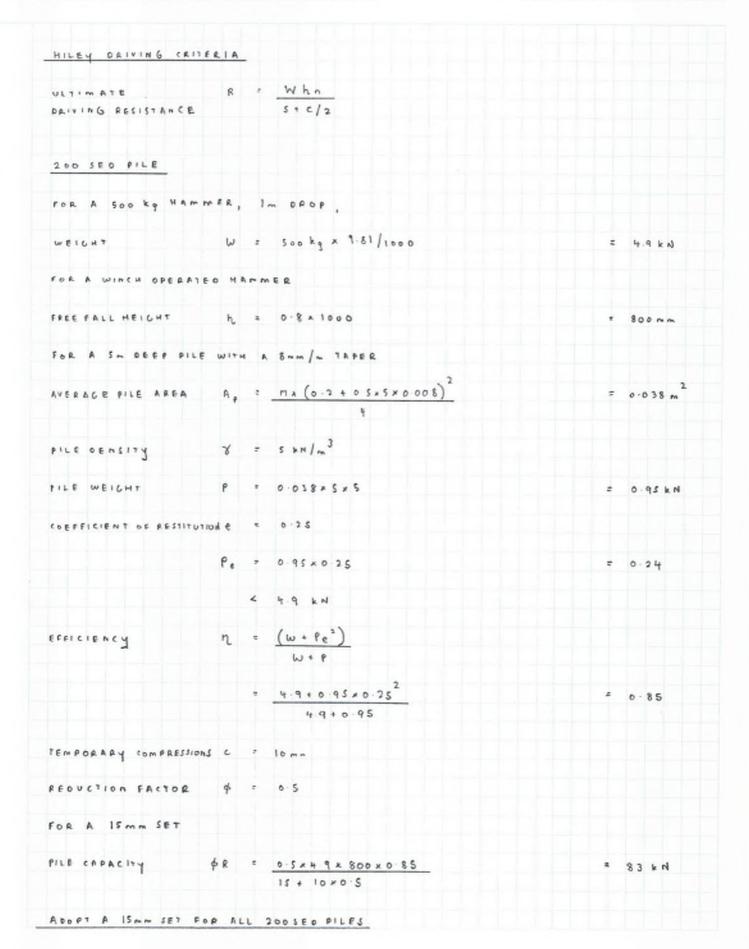
JOB SH26 MORRINSVILLE ROAD

DEAD LOAD	WALL	Guall	0.4 × Pa + 5.6 m	= 2.24 × N/m
ORAO LORO	FLOOR	Gricor +	0.5 kta x 2.2m	₹ 1-1 kN/m
DEAD LOAD	OFCK	Gdeen =	oskPa + 1 Sm	= 0.75 KN/m
DRAD LOAP	CLAG	Gilob :	1.5 + 0.15 + 25	= 5.63 KN/m
DEAD LOAD B			1	
Seno Long S		G DEDM 3	1 50/0	
TOTAL DEAD	LOBO	G =	2-2+ + 1-1 + 0-75 + 5.63 + 4	= 13.72 kN/m
LIVE LOAD FL		Q floor ?	1.5 × 2.9	= 3.3 kN/m
LIVE LOAD SL	AR	Qslob =	2.5 . 1.9	= 4.75 kN/m
		Yslab		4-13 4474
LIVE LOAD D	eck.	Q deck 7	1 5 × 2 0	e 3 kn/m
TOTAL LIVE L	040	Q =	3 - 3 + 4 7 5 + 3	# 11.05 KN/m
ULS LOAD C	ASE	Ed =	1 2 + 13.72 + 1 5 + 11 + 0 5	= 33 kN/m
MAX SPACING	6	\$ 7		
			εj	
			80	= 2.4 m
			33	
ADOPT PILES	An TA	x 2 4 m c	NTRES AROUNO EASTERN PERIME	TER IF SUPPORTING
FLOOR AND	ROOF A	BOVE		
PILES BENEA	TH POINT	T LOADS F	OM BEAMS	
TAKE POINT	LOADS	FROM GE	M DESIGN SPREADSHEET . TYPIC	ALLY , 2003ED OK
BEAM ID	NCCKN)		
BEAM OI	5 2			
	41			
8 E A 4 0 3	27			
60 MA 30	51			
1	2.3			
6.5. P-1	12			
	- 1			

JOB	No 12843
PAG	ε
BY.	NAN
DAT	E 11 02 2021

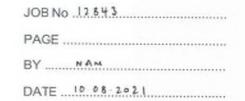
JOB 3426 MORRINSVILLE RORD

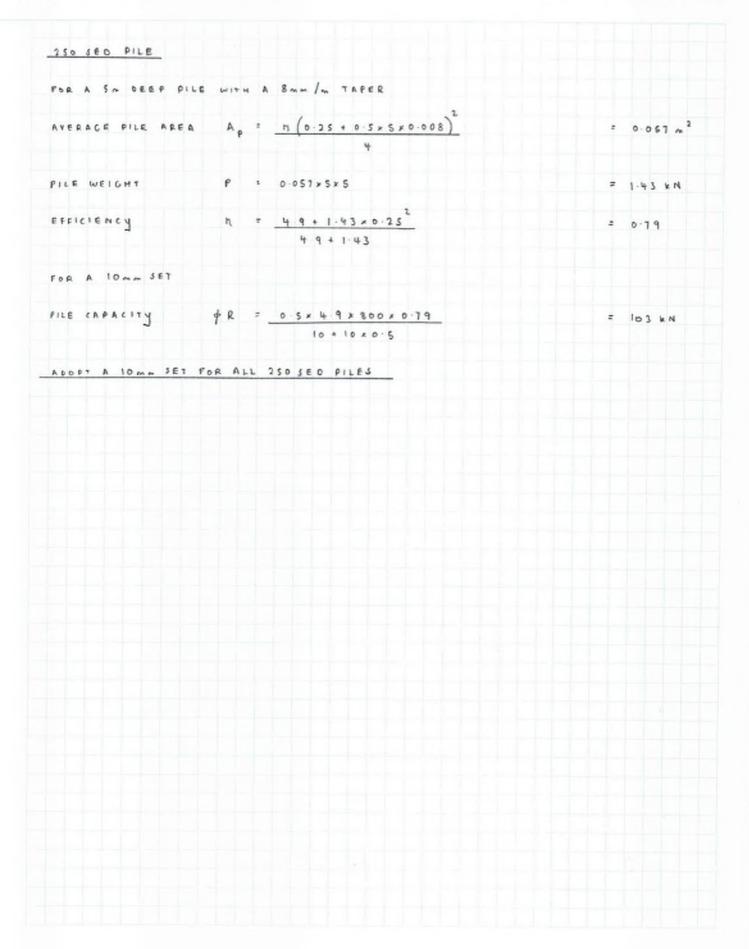
PILES	-	s v	Pf	06	27	10	6	-	111	18	R	n A	1	E	0	GE	0	F	F	0.0	o T	114	6	+										+									
ADOP	T	7	не				0	w	1	~ (L	0 4	0	5																					t							
DEAD		, A	D	E		, 1		6		T	-	GFI	tot			6.	3	*	00	9	×	2 5																	4	7	s	R N	1.
DEAO		Lo	A	0	5	LA	0			ļ	-	6,	104	-		0	15	*	Þ	\$,	- 2	2 5																7	5	- 6	k	N)	~
LIVE	1	.0	n o		SL	A	8					54	0.0	;		3	\$	* :	3.	0																		*	7	. 5	k	n/.	
UL S	ι	o A	0	(A	5 8						E				1 -	3.	• (6	.75	5 1	5	- 6)	. 1	- 5	*	7 - 9	5									2		16.	1	h N	1 ~
A 0 0 P	,		20	•	5	e e	,	D	1 8	ε	5						t																					t					
SPAC		c										\$			-	84		ī																				-	3	.0	•		
4 0 0 P	T	P	L	E J		A	1	P	n A	×		3.0	2 m		c	En	70	E	5					ы	01	E			e c					0	PIL	Es	A -	7	m	AA			
PILES		su	PP	0	8 1	1 11	6		u	.E.	. 1	EA	2		81	(ĸ	ω	AL	L							6	4	3	2	6	×	2	,,	5 2	k	N		01	<			


JOB No .12.843
PAGE
ВҮ N Ам

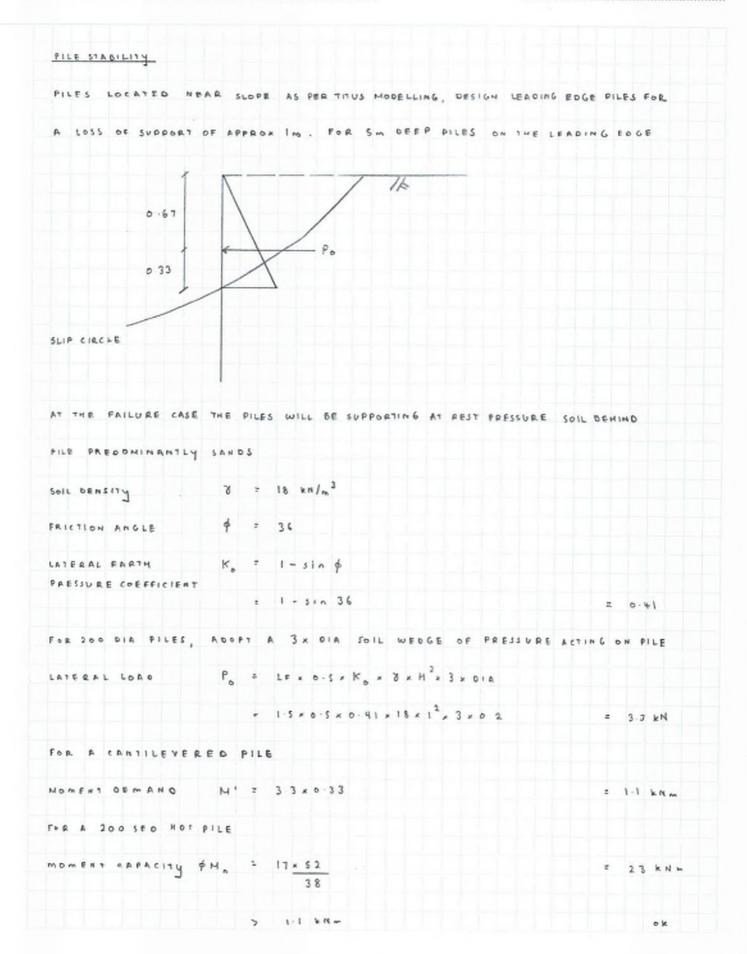
JOB 5426 136 MORRINSVILLE ROAD

DEAO	LO	A O	R	00	F		-	6	100	•	4		45	*	3	. 6			-	0 g /	4.0	10	0.45	D	DE	cĸ							1.6	40	1/m	
										-					-	_					~															
DEAO	Lo	60		10	OK			6	Floo	r ²	0	2.1				0					6	dec	ĸ	*	0.	53	1	.4			1		1.0	ke	×/m	-
FAO	Lo	n D	ω	AL	L			6	20	. *	(0	4	× '	3	0								2	0	7	k	N/N	•		•		1.2	k	1-	
OAB	10	0	BL		ω	011		6	140	*		0.	10	۹.~	3	• 0	*	23	2												-		12 -	5 1	N /	~
EAO	Los	P	Fo	. 1 .	e (Gra	ot		e		3,	. 0	.9	* 3	2.5														2	4	6.75	5 6	н/"	•
TOTAL	9		L	0 A	0			G		,	1	.6	4	ŀ	0	4	1-	2 4	1	2.	5 +	6.	75	•	0	7							24	k (N/ m	
1V E	Lo		Re	oF				Q,,	000	2	0		25	* :	3 .	6		L	ve	ŧ	LO	A.D	DE	. <	K						•		0.0	۹ ،	CN/	~
LIVE	LoA	0	FL	001	2		(D _n	0.04		1	. s	*	2	. 0			+		Q	de	ck	-		2 0		1	4			-		3.0	k	N/~	
.1VE	Lo	A 0	FO	011	N G					2													5		2.9		N	~			-	;	2.3	۲	м/,	2
TOTAL	L	ve		Lol	10				0		0		٩	• :	3.	0	12	.3		2	. 8										-		9.0	> k	N/~	
LS	Lon	p	C R	s e				E	d		1	. 2	6	,		· \$	q																			
											1.	2	*	24	0	+	1-1	×	9														42	**	4/~	
DOP	T	2.5	, J	e o	p	111	F S																													
PILE	CA	PP	cI	٦y				¢٢	٤.,	-	I	21	4	kı	4																+					
02	A	50	0	Kg	h	EI	6 1	. 7	,	1~		A		ρ,		10	m	m :	SE	T																
							3	ф н			1	0	3	je 1	N			R	e r	E	2 1		T	<e< td=""><td>4</td><td>ATI</td><td>-</td><td>EO</td><td>HILE</td><td>7 (</td><td>CAL</td><td></td><td>LAT</td><td>rle</td><td>ins.</td><td></td></e<>	4	ATI	-	EO	HILE	7 (CAL		LAT	rle	ins.	
000	t	10	w	e a	н	LE	y	٧	a 1	υE									1					1												
M & ×	S P	•	N G						1	-	-	0 3	_						+													4	2 . 4	15	~	
Dop					5.0									-				-																		
			_		_		_			-	1	-																								
PILE DI PILE AF								15m	2	1																										
BEARIN									t																							1	-			
SKIN F											-																									




JOB SHILL ISG MORRINSVILLE ROAD

JOB \$426 136 MORRINSVILLE ROAD



JOB No .12843
PAGE
ВҮ № Ам
DATE

JOB SHILL ISE MORRINSVILLE ROAD

JOB SHIG 136 NORRINSVILLE ROAD

JOB No12 8 4 3	
PAGE	
ВҮ МАМ	
DATE	

WHAT IF LOSS OF	JUPPORT (was 2m (say)
LATERAL LOAD	۴. ۰	1.5×0.5×0.41×18×22×3×0.2 = 13 kN
MOMENT DEMANO	N . =	13 x 2 * 8.9 kNm
		3
	e	23 kNm 0K
EVEN IF LOSS OF	SUPPORT	7 Jm, PILE STILL OK
CHECK COMBINED	AXIAL + 1	NOMENT PEMANOS
AXIAL DEMAND	N'c =	80 KN (SAY, CONSERVATIVE)
COMPRESSION	ψN, ±	475 k N
CAPACITY		
RATIO N	+ N'2 +	8 q + 8 p = = 0.56
фм	n ¢Nc	23 415
		1.0
		1.0 OX
CHECK WHETHER .		EDMENT DEPTH IS ADEQUATE ADOPT SOIL PROPERTIES
CHECK WHETMER	A 5,- EmBE	EDMENT DEPTH IS ADEQUATE ADOPT SOIL PROPERTIES
	A Sm EmBe OF JLIP CIR Kp =	EDMENT DEPTH IS ROEQUATE. ROOPT SOIL PROPERTIES ILLE
AT APPROX LEVEL	A Sm EmBe OF JLIP CIR Kp =	EDMENT DEPTH IS ADEQUATE ADOPT SOIL PROPERTIES
AT APPROX LEVEL PASSIVE PRESSURE	A Sm timbe OF JLIP CIR Kp =	EDMENT DEPTH IS ADEQUATE ADOPT SOIL PROPERTIES ACLE $\frac{1 + \sin \phi}{1 - \sin \phi}$
AT APPROX LEVEL PASSIVE PRESSURE	A Sm EmBe OF JLIP CIR Kp 7	EDMENT DEPTH IS ADEQUATE ADOPT SOIL PROPERTIES RCLE <u>1 + SIA \$</u> 1 - SIA \$
AT APPROX LEVEL PAISIVE PRESSURE COEFFICIENT	A Sm timbe OF JLIP CIR K _P 7	EDMENT DEPTH IS REQUATE ROOFT SOIL PROPERTIES $\frac{1 + \sin \phi}{1 - \sin \phi}$ $\frac{1 + \sin 36}{7}$
AT APPROX LEVEL PAISIVE PRESSURE COEFFICIENT	A Sm EmBE OF JLIP CIR Kp = #	EDMENT DEPTH IS ADEQUATE ADOPT SOIL PROPERTIES ALLE <u>1 + SIN Ø</u> <u>1 + SIN Ø</u> <u>1 + SIN 36</u> T - SIN 36 BELOW SLIP CIRCLE)
AT APPROX LEVEL PASSIVE PRESSURE COEFFICIENT FOR A 7~ EMB65	A Sm EmBE DF JLIP CIR Kp = # ment (1m \$Hu =	EDMENT DEPTH IS ADEQUATE. ADOPT SOIL PROPERTIES RCLE $\frac{1 + \sin \phi}{1 - \sin \phi}$ $\frac{1 + \sin 36}{1 - \sin 36}$ = 3.85.
AT APPROX LEVEL PASSIVE PRESSURE COEFFICIENT FOR A 7m Emble PILE CAPACITY	A Sm EmBE OF JLIP CIR Kp = # ment (1m \$Hu = 7	EDMENT DEPTH IS ADEQUATE ADOPT SOIL PROPERTIES ACLE $\frac{1 + \sin \phi}{1 - \sin \phi}$ $\frac{1 + \sin 36}{1 - \sin 36}$ 3.85 BELOW SLIP CIRCLE) 4-2 KN REFER ATTACHED SPREAD3HE
AT APPROX LEVEL PASSIVE PRESSURE COEFFICIENT FOR A 7m Embés PILE CAPACITY HOMEVER, CALCUL	A Sm EmBE OF JLIP CIR Kp = # MENT (1m \$Hu = > ATIONS ASS	EDMENT DEPTH IS ADEQUATE ADOPT SOIL PROPERTIES ALLE <u>I + SIN \$\$</u> <u>I + SIN \$\$</u> <u>I + SIN 36</u> I - SIN 36 BELOW SLIP CIRCLE) 4.2 kN REFER ATTACHED SPREADSHE 3.3 kN OK
AT APPROX LEVEL PASSIVE PRESSURE COEFFICIENT FOR A 7m Embés PILE CAPACITY HOMEVER, CALCUL	A Sm EmBE OF JLIP CIR Kp = # MENT (1m \$Hu = > ATIONS ASS	EDMENT DEPTH IS ADEQUATE. ADOPT SOIL PROPERTIES ACLE <u>I + Sin \$\$</u> <u>I + Sin \$\$</u> <u>I + Sin 36</u> I - Sin 36 DELOW SLIP CIRCLE) 4.2 kN REFER ATTACHED SPREADSHE 3.3 kN OK
AT APPROX LEVEL PAISIVE PRESSURE COEFFICIENT FOR A 7~ EMBER PILE CAPACITY HOMEVER, CALCUL REOUCE AREA BES	A Sm EmBE OF JLIP CIR Kp = # MENT (1m \$Hu = > ATIONS ASS HIND PILE	EDMENT DEPTH IS ADEQUATE. ADOPT SOIL PROPERTIES ACLE <u>I + Sin \$\$</u> <u>I + Sin \$\$</u> <u>I + Sin 36</u> I - Sin 36 DELOW SLIP CIRCLE) 4.2 kN REFER ATTACHED SPREADSHE 3.3 kN OK

JOB SH26 136 MODEINSVILLE ROAD

DATE 10.08.2021

0 . 9 2 m 2 SELOW LEVEL LINE . ABEA FOR A 3m EMBEOMENT 2 AREA BELOW SLIP CIRCLE 1.63 m 0.92 - 2 ok Sm EMBEOMENT 1.5 ADEQUATE A

Pile Vertical Strength B1/VM4

Cohesionless Soil

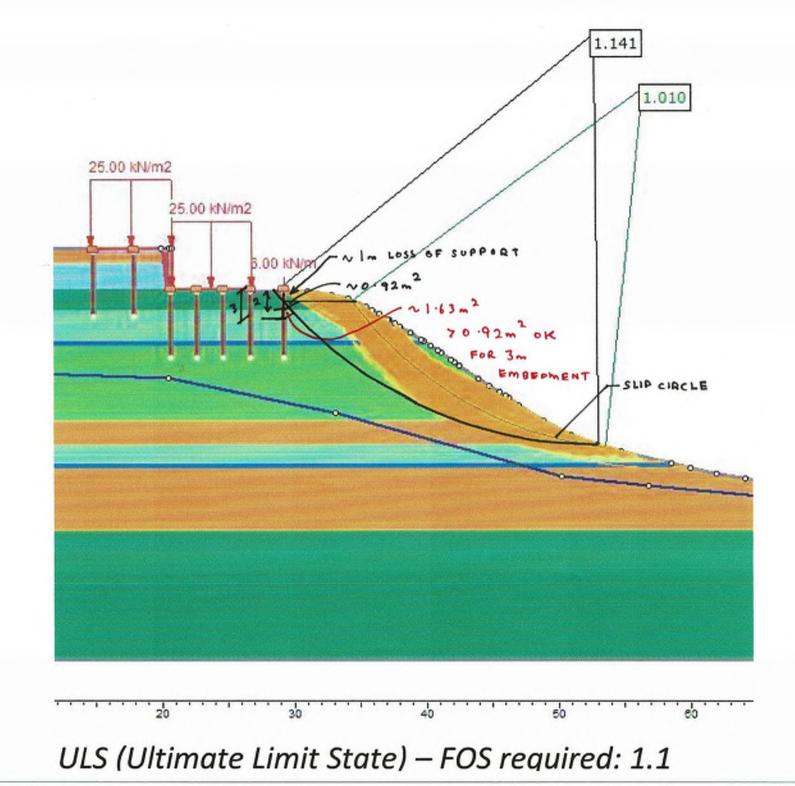
Vu=Vsu+Vbu

Vbu=	(9c'+q'Nq+0.6DFNY)Ab		=	155.1 kN
vou-			_	155.1
c'	effective stress cohesion is 0 for cohe	sionless soils	=	0 kPa
q'	Vertical stress	q'=HY	=	64.8 kPa
	Pile depth	н	=	<mark>3.6</mark> m
	Soil density	Y	=	18 kN/i
Nq	Bearing strength factor Figure 4	Nq	=	75
φ	Angle of shearing resistance		=	36
Ab	Area of base of pile		=	0.031 m²
	Pile diameter	D	=	<mark>0.2</mark> m
Г	Y when the water tableis deeper than 2B beneath the underside of the foundation and Y' when the water table is above this.	Υ or Υ'	=	18 kN/r
Nγ	Bearing strength factor Figure 3		=	35

Shaft Ro	esistance			
Vsu=(σ'	K _s tanδ')average*CL		=	5 kN
D	Pile diameter		=	0.2
С	Pile circumference		=	0.63 m
L (H)	Pile shaft length		=	<mark>1.1</mark> m
Ks	Factor from Table 2		=	1.5
q'	Vertical stress Pile depth Soil density	q'=HY H Y	= = =	19.8 kPa 1.1 m <mark>18</mark> kN/m ³
σ'	Vertical effective stress	q/2	=	9.9
δ'	drained angle of shearing	2ф/3 2ф/3	= =	23.76 degrees 0.415 rads
φ	angle of shearing resistance	·	=	36

φVu	φVu=φVsu+φVbu	=	80
ф	Strength reduction factor	=	0.5 kN

Pile Vertical Strength B1/VM4


Cohesionless Soil

Vu=Vsu+Vbu

Vbu=	(9c'+q'Nq+0.6DFN _Y)Ab		=	242.7 kN
c'	effective stress cohesion is 0 for coh	esionless soils	=	0 kPa
q'	Vertical stress	q'=HƳ	=	64.8 kPa
	Pile depth	н	=	<mark>3.6</mark> m
	Soil density	Ŷ	=	18 kN/
Nq	Bearing strength factor Figure 4	Nq	=	75
φ	Angle of shearing resistance		=	36
Ab	Area of base of pile		=	0.049 m²
	Pile diameter	D	=	0.25 m
Г	Y when the water tableis deeper than 2B beneath the underside of the foundation and Y' when the water table is above this.	Ύ or Ύ'	=	<mark>16</mark> kN/
Nγ	Bearing strength factor Figure 3		=	35

Shaft Ro	esistance			
Vsu=(σ'	K _s tanδ')average*CL		=	6 kN
D	Pile diameter		=	0.25
С	Pile circumference		=	0.79 m
L (H)	Pile shaft length		=	<mark>1.1</mark> m
Ks	Factor from Table 2		=	1.5
q'	Vertical stress Pile depth Soil density	q'=HY H Y	= = =	19.8 kPa 1.1 m <mark>18</mark> kN/m³
σ'	Vertical effective stress	q/2	=	9.9
δ'	drained angle of shearing	2ф/3 2ф/3	= =	23.76 degrees 0.415 rads
φ	angle of shearing resistance		=	36

φVu	φVu=φVsu+φVbu	=	124
ф	Strength reduction factor	=	0.5 kN

Page 47

Table 7: FOS Standard Requirements

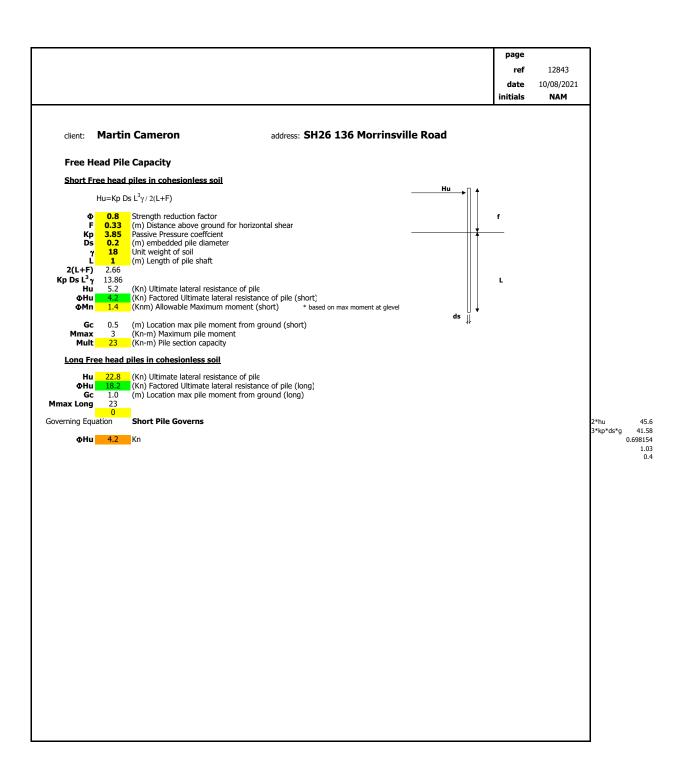
Modelled Loading Condition	FOS Required
Gravity Conditions	1.5
Gravity Conditions (elevated water table)	1.3
Seismic SLS (Serviceability Limit State)	1.5
Seismic ULS (Ultimate Limit State)	1.1

5.7 Adopted Subsurface Conditions

The stratigraphy as determined by TITUS CIVIL Consulting Engineers with reference to CPT logs for lot 4 undertaken by OPUS, has been separated into the different materials displayed in the Table below.

	Material Name	Color	Unit Weight (kN/m3)	Sat. Unit Weight (kN/m3)	Strength Type	Cohesion (kPa)	Phi (deg)	Cohesion Type	Water Surface	Ни Туре	Hu	Ru
			~*~~	-197	Mohr Coutemb	~~	28	\sim	WaterSurface	Automatically Calculated		
6	Coarse Dense Sands		18	20.7	Mohr-Coulomb	2	40		Water Surface	Automatically Calculated		
7	Coarse Sands		18	20.7	Mohr-Coulomb	2	38		Water Surface	Automatically Calculated		
7	Medium to Coarse Sands		18	20.7	Mohr-Coulomb	2	37		Water Surface	Automatically Calculated		\square
7	Medium Sands		18	20.7	Mohr-Coulomb	2	36		Water Surface	Automatically Calculated		
(Medium to Fine Sands		19	21	Mohr-Coulomb	2	35		Water Surface	Automatically Calculated		
٦	Mine Shield		J.J.	Let	Methcodomet		×	r	Watersonace	Alternaticat Catchased	~	$\overline{\mathbf{N}}$
	Holocene Sediments		13	14	Mohr-Coulomb	0	32		Water Surface	Automatically Calculated		
	Free Draining hardfill		18	20.7	Mohr-Coulomb	2	37		Water Surface	Automatically Calculated		
	Concrete Retaining Wall		25		Undrained	650		Constant	None			0
	Concrete Floor		24		Mohr-Coulomb	30	40		None			0
	Liquefied Layer		18		Undrained	2		Constant	Water Surface	Custom	0	

Table 8: Material characteristics

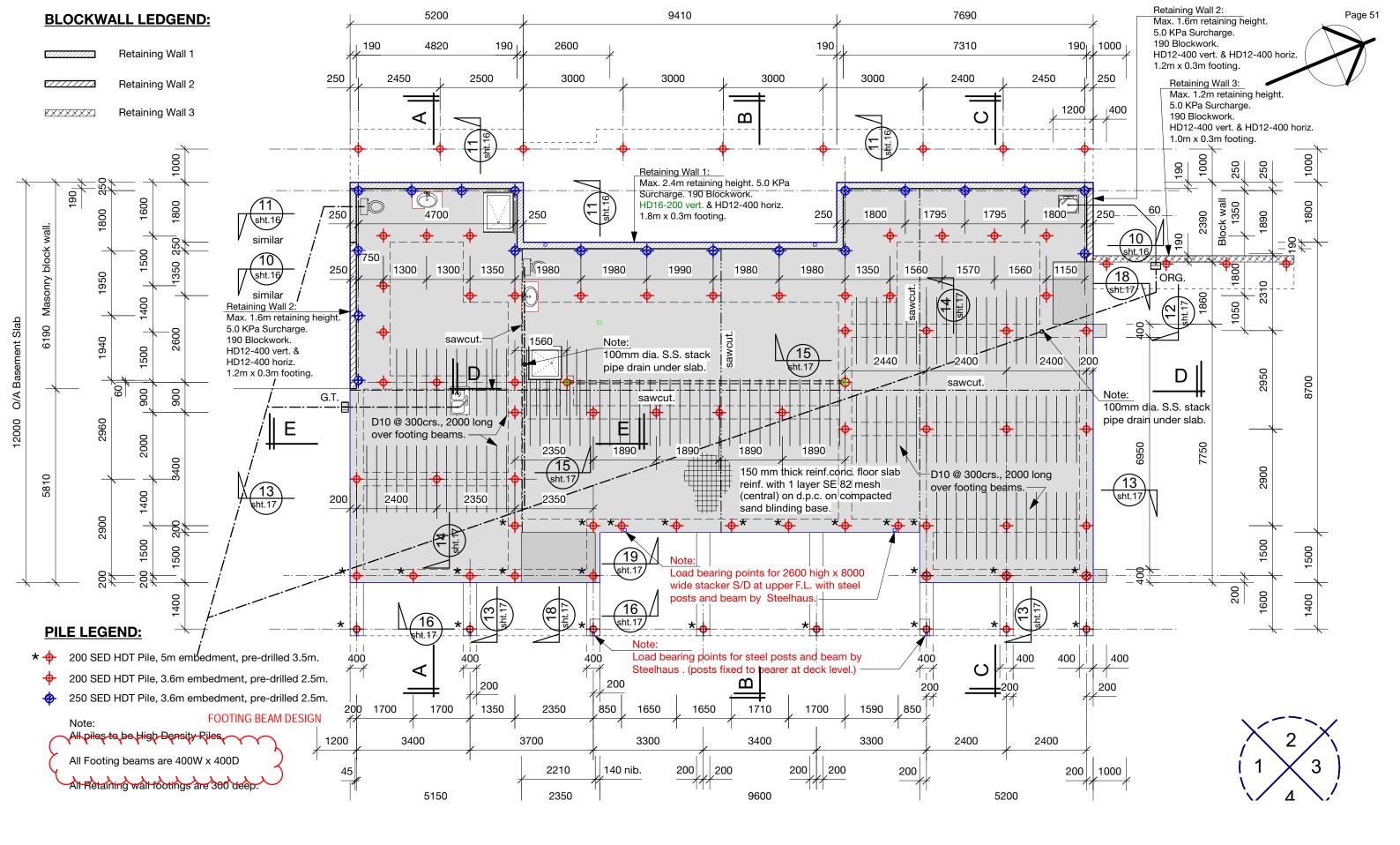

5.8 Groundwater Model

The water table has been modelled at 12.0m below the ground surface at the top of the slope and 0.3m below the surface at the bottom except in the elevated water table conditions.

The elevated water table has been modelled at 0.9m below the ground surface at the top of the slope and 0.9m above the ground surface at the bottom of the slope as the gully is expected to flood during a large storm event.

5.9 Loading

Loadings applied to each model are shown in the Table below. The location of loadings may be found in Appendix H.



4. FOOTING BEAM DESIGN

Ref: 12843

JOB No .12.843

PAGE

BY NAM

JOB 5426 136 MORRINSVILLE ROAD

FOOTING BEAM DE	516M	
CONSIDER WORST (TALE FOOTING SPANNING 2.5m	
ULS LOBO CASE	Fa = 33 kN/m	
MOMENT DEMAND	N' = wl	
	N ⁴ = wL 8	
	2 33 * 2 5	26 k N m
	8	
SHEAR DENAND	V' = wL	
	= 33×2·5	* 41 kN
	2	
784 400 W × 400	D FOOTING	
400		
+	2-HD16 TOP & BOTTOM	
400	RID-200 STIRRUPS	
-		
MOMENT CAPACITY	\$ma = \$ Asfyjd	
REDUCTION FACTOR	q6 = 0-85	
	As = nD ² × n	
ACCA CHERN	Ma a nv xm	
AREA STEEL	LL	
AREA STEEL	4	
ARÊA STÊEL	= n×16 ² × 2	402 mm ²
ARÊA STÊEL		402 mm ²
ARÊA STÊEL	= <u>n x 16² x 2</u> 4	= 402 mm ²
AREA STEEL LEVER ARm	= <u>n×16²</u> × 2	< 402 mm ²
	$= \frac{n \times 16^2}{4} \times 2$ $jd = 0.9d$	< 402 mm ²
	= <u>n x 16² x 2</u> 4	* 402 mm ² 7 276 mm
	= <u>n×16² × 2</u> 4 jd = 0.9d e 0.9×307	7 276 mm
	$= \frac{n \times 16^2}{4} \times 2$ $jd = 0.9d$	
	= <u>n×16² × 2</u> 4 jd = 0.9d e 0.9×307	7 276 mm

JOB 2H26 136 MORAINSVILLE ROAD

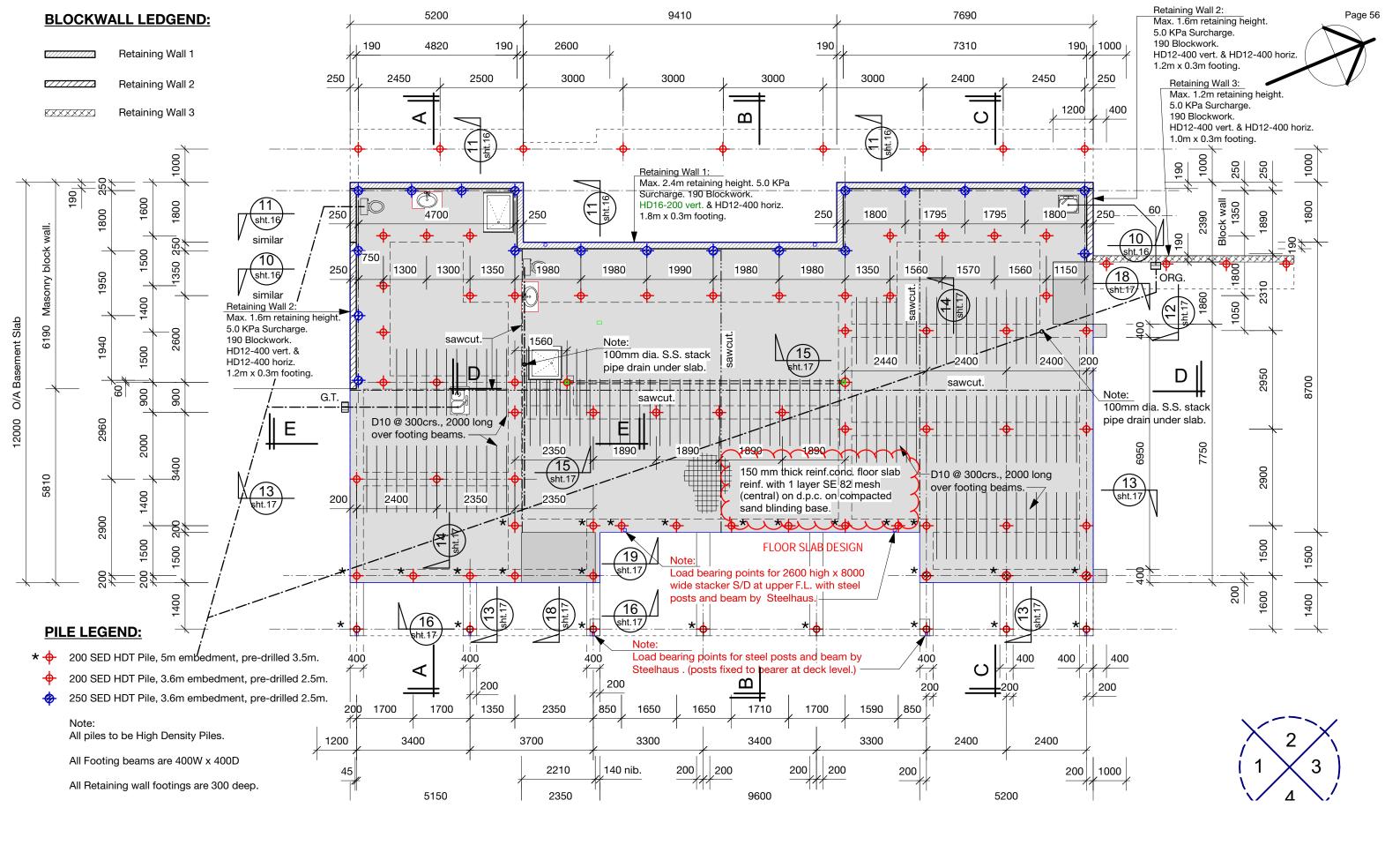
V = (0.07 + 10 P.W) f'c BASIC SHEAR STRESS Pu = As bud REINFORCEMENT RATIO : 402 = 3.27×10-3 400 × 307 FOR 20 MPA CONCRETE V = (0.07 + 10 + 3.27 + 10-1) J20 1 0.46 mPa Ve Kakavobrd CONCRETE MECHANISM kokd : 1.0 FACTORS V : 0.46 × 400 × 307 = 56 kN Vs = Arfytd REBAR MECHANISM Av = 1x102 x 2 = 157 mm² STIRRUP AREA V. = 157 = 300 = 307 = 72 kN 200 \$ + 0.75 REDUCTION FACTOR $\phi V_n = \phi (V_c + V_s)$ SHEAR CAPACITY = 0.15 (56 + 72) = 96 kN > 41 kN ok ADDAT 400 D x 400 W BEAM, WITH 2-HOID TOP & BOITOM & RID-200 STIRRUPS BLOCKWALL FOOTING CONSIDER WORST LOAD CASE ULS LODO CASE Ed = 42 kN/m AT 2m SPACING MOMENT SEMAND N" = 42+ 2 = 21 kNm 8

JOB SHIL MORRINSVILLE ROAD

JOB No 12843

PAGE

BYNAM


V' = 42×2 SHEAR DEMAND = 42 KA 2 TRY 4-HOIZ TOPY BOTTOM IN 1.2 - WIDE XO.3 - DEEP FOOTING SHEAR OK BY INSPECTION, CHECK NOMENT DEMAND . MOMENT CADACITY & M. * & Asfyjd REDUCTION FACTOR 4 = 0.85 AREA STEEL AS = HOZAN 4 = 11×12 × 4 = 452 mm2 4 jd = 0.98 LEVER ARM 1 0.9 + 225 = 203 mm \$M = 0.85 + 452 + 500 + 203 = 39 k N m > 21 kHw ok ADOOT MIN 4-HOIS TO B BARS IN BLOCKWALL FOOTINGS HDIG BARS ADOPTED

5. FLOOR SLAB DESIGN

Ref: 12843

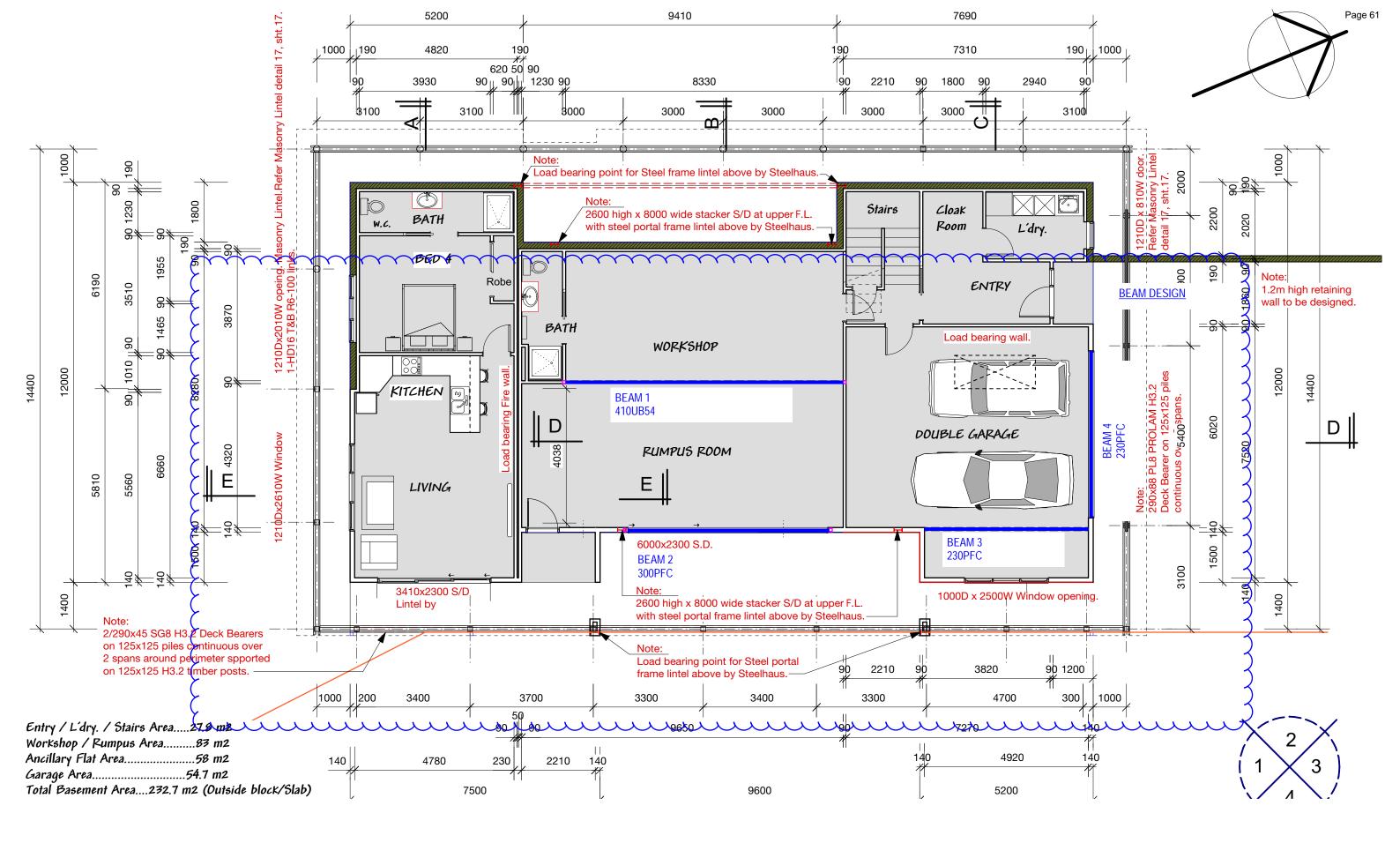
JOB 136 NORRINSVILLE ROAD

FLOOR SLAB TO COM	PAISE SO	LIO ISO THE FLOOR SLAB. SLAB TO SPAN	ONE - WAY
OCIWEEN FOOTING &	EAMS		
GARAGE SLAG			
DEAD LOAD SLAB	GSLAR :	0.15 kPax 25	= 3.75 KPQ
LIVE LORD GARAGE	Quor =	2.5 kPq	
	-	TRY ONE END CONTINUOUS	
MIN DEPTH	d	10	
	-	2400	145 ~~
ULS LOAD CASE	e1 :	1.26+1-59	
	2	1-2+3-75 + 1-5+2-5	= 8.25 kPa
		2	
SACCING MOMENT	M ⁴ ≠	128	
		9 × 8.25 × 2.9	= 4.9 kNm/m
		128	
TPY SE&2 MESH			
MOMENT CAPACITY	¢m, +	\$ A, f, jd	
REDUCTION FACTOR	4 :	0.85	
AREA SIEEL	A	251 mm²/m	
STEEL TIELD STREMOTY	f.y =	Soo mPg	
	14 =	0 9 8	
		0 9 40 5 4 1 50	= 68 mm
	dim =	0-85×251×500×68	= 7.2 kHm/m

JOB 136 MORAINS VILLE ROAD

4.9 kN-1m > OK CHECK HOGGING MOMENT 2 MOMENT DEMAND MI & WL 8 = 8.25×2.92 = 8.7 KNm/m 8 > 7.3 kN~/m PROVIDE ADDITIONAL HOGGING STREL. TRY DIO - 300 A: + + D + 1000 AREA STEEL 4 5 = nr102 × 1000 = 262 mm²/m 4 300 MOMENT CADACITY \$ M = 7-3 + 0 85 x 267 x 300 x 63 = 11.5 ×Nm/m > 8.7 KNm/m DK PROVIDE SE82 MESH AND DID-300 HOGGING STEEL RUMOUS SLAB DEAD LOAD SLAB Galab - 3.75 KPO OFRO LODO PARTITIONS Gen + 0.5 KPO FOTAL DEAD LOAD G = 3.75 + 0 5 # 4.25 MP4 LIVE LOAD Q 7 2.5 KPa ULS LOBO CAJE E3 + 1.2 × 425 + 1.5 × 7.5 = 8.85 KPa d : 3000 MIN DEPTH = 150 mm 20 = 150 mm

JOB 136 MORRINSVILLE ROAD


2 N' " 9×8-65×3 S. 6 KNW/M ÷ MOMENT DEMAND 128 SAGGING 4 7.3 KNm/m OK N. = 8 85 × 32 HOGGING DEMAND = lo kHalm 8 4 11.5 ×NA/m OK PROVIDE SE & 2 MESH AND DID - 300 HODGING STEEL CHECK DUNCHING SHEAR Q = 13 KN FOINT LOAD Bp = 5350 PUNCHING WIDTH 18.7 mm FOR A 45° SPREPO PERIMETER AT NID DEPTH Po = 4x (75x2+18.7) PERIMETER = 675 mm V = 1.5Q P.d SHEAR STRESS = 1.5 + 13 + 1000 = 0.19 NPA 615 + 150 re = \$ 0.08 T'c MIN CONCRETE SHEAR STRESS = 0.75×0.08× 20 0.27 mP. > 0.19 m Pa ox SLAG OK FOR PUNCHING

6. BEAM DESIGN

Ref: 12843

JOB 1126 136 MORRINSVILLE ROAD

BEAM OI DESIGN			
ADOPT THE FOLLOWS	NG LOADS		
PEAD LOND FLOOR	Gitesr =	OS kPo	
LIVE LOAD FLOOR	0 .	1.5.2.0	
CITE FOND PLOOP	floor	1.5 K Pa	
TRIBUTARY WIDTH	B =	4.1 m	
SPAN LENGTH	Ls :	8.4m	
REFER TO THE ATTA	CHED SPR	FAOSHFET FOR FULL CALCULATIONS	
Acopt Nin HIDUBS	1		
POST DESIGN			
DESIGN POST TO SU	PPOAT B	AM OI	
ATIAL LOAD	N'e =	\$2 -	1 5 b d
1 PY 90×6 5H3			
MONENS DEMANO	м' :	Pe	
		52 x 0 . 09 x 0 . 5	
		522004205	= 2.3 k Nm
UTILISATION PATIO	3	0.2	memoes
	4	1-0	ok
ADOPT MIN 90+6 SI	AS Pass C	(Panet 1	

	1.2G+1.5Q = 0.9G+Wu =			Critica	al Bending Momen	t = 108.78 kNm		
ending Mome	nt Load Case	e Mu*						
			1.2G+1.5Q= 0.00 0.9G+Wu= 0.00			G+ψ _L Q = Ws =	0.00	no roof live loa
TOTAL			1 2G+1 5	iQ= 0.00		0.00kN G+ ψ_s Q =	0.00kN 0.00	0.00kN
						0.00kN	0.00kN	0.00kN
						0.00kN	0.00kN	
						0.00kN 0.00kN	0.00kN 0.00kN	
						0.00kN	0.00kN	
		Trib(m ²)	G	Q	W	W _G	W _Q	Ww
int Load	At Position A=	:	(Measured from	n LHS)				
						Ws =	0.00	
	0.9G+Wu= 2.33					G+ψ _L Q =	5.05	no roof live lo
		UDL (ULS) , kN/m 1.2G+1.5Q= 12.33				UDL(SLS), kN/r G+ψ _s Q =		
				N/m				
	TOTAL	L	I		1	2.59 kN/m	6.15 kN/m	0.00 kN/m
						0.00 kN/m	0.00 kN/m	0.00 kN/m
						0.00 kN/m	0.00 kN/m	
	Floor	4.10 m	0.50 kPA	1.50 kPA		2.05 kN/m	6.15 kN/m	
						0.00 kN/m 0.00 kN/m	0.00 kN/m 0.00 kN/m	
		Trib(m)	G	Q	W	W _G	W _Q	W _W
UDL				Self Weight :	0.54 kN/m			
Long Terr	m Load Factor, ψ _L =	• 0.4						
	rm Load Factor, ψ _s =							
	Span =	= 8.40 m						
eam Desi	gn Location:	Beam 01 Design Beam 01 Design						
)	136 MORRINSVI				By Date	NAM 09.08.2021		
2015 LTD CONSULTING CIVIL & STRUCTURAL ENGINEERS								
	ARNOLD &	E	Job No	12843				

-	JOHNSTONE		Job No	12843	
ONSULTING	2015 LTD CIVIL & STRUCTURAL ENGINEER	8	Page By	NAM	
)	136 MORRINSVILLE ROAD		Date	09.08.2021	
Try Timber	Section				
ity timber	Section				NZS3603
	Width (b) = 90 mm	$L_{av} = 4.00$	m	Grade : Hyspan	
	Depth (d) = 360 mm	,		$\varphi_f = 0.8$	CL 2.5
				$k_1 = 0.8$	Table 2.4
			k	₂ (defl) = <u>2.0</u>	Table 2.5
	$\phi M_n = \phi k_1 k_4 k_5 k_8 t_6 k_1 k_4 k_5 k_8 t_6 k_1 k_4 k_5 k_8 t_6 k_1 k_2 k_2 k_2 k_3 k_1 k_2 k_2 k_2 k_3 k_1 k_2 k_2 k_2 k_3 k_3 k_3 k_3 k_3 k_3 k_3 k_3 k_3 k_3$	hZ _{vv}		k ₄ = 1	Table 2.7
	= 42.29 kNr	5 AX	od	k ₅ = 1.000	Eq 2.5
				k ₈ = 0.81	Table 2.8
				f _b = 42 MPa	
				E = 13.2 GPa	
				S ₁ = 17.71	Eq 3.5
	Deflection :	Dead = 36.4 mm	= Span / 231		
		G+ψ _s Q = 96.8 mm	= Span / 87		
		G+ψ _L Q = 141.8 mm	= Span / 59		
		$W_s = 0.0 \text{ mm}$	= Span / #DIV/0!		
	· 4 ·				
Γry Steel S	Section	I _{xx} Z _{xx}			NZS3404
Γry Steel S	Section	I _{xx} Z _{xx} .00x10^6mm4 1060x10^3mm3		f _y = 320 MPa	NZS3404
Try Steel S	Section 410 UB 53.7 188			$f_y = 320 \text{ MPa}$ $\phi_f = 0.9$	NZS3404 Table 3.3(1)
Try Steel S	Section			,	
Γry Steel S	Section 410 UB 53.7 188			φ _f = 0.9 E = 200 GPa α _s 0.517	
Try Steel S	Section 410 UB 53.7 188 φM _{sx} = φ Z _{xx} f _y	.00x10^6mm4 1060x10^3mm3		$\phi_{f} = 0.9$ E = 200 GPa $\alpha_{s} 0.517$ $\alpha_{m} 1.130$	Table 3.3(1)
Γry Steel S	Section 410 UB 53.7 188 φM _{sx} = φ Z _{xx} f _y = 305.28	.00x10^6mm4 1060x10^3mm3 > Mu* therefore O.K		$\phi_{f} = 0.9$ E = 200 GPa $\alpha_{s} 0.517$ $\alpha_{m} 1.130$ PP	Table 3.3(1) CL 5.6.1.1.2[c] CL 5.6.1.1.1(b) End Restraint Table 5.6.3(1)
Try Steel S	Section 410 UB 53.7 188 φM _{sx} = φ Z _{xx} f _y	.00x10^6mm4 1060x10^3mm3	4.30 m	$\phi_{f} = 0.9$ E = 200 GPa $\alpha_{s} 0.517$ $\alpha_{m} 1.130$ PP $k_{t} 1.07$	Table 3.3(1) CL 5.6.1.1.2[c] CL 5.6.1.1.1(b) End Restraint Table 5.6.3(1) Twist restraint factors Tb 5.6.3 (1
Try Steel S	Section 410 UB 53.7 188 φM _{sx} = φ Z _{xx} f _y = 305.28	0.00x10^6mm4 1060x10^3mm3 > Mu* therefore O.K 4.00 m L _e =.k _t .k _r .k _j L	4.30 m	$\phi_{f} = 0.9$ E = 200 GPa $\alpha_{s} 0.517$ $\alpha_{m} 1.130$ PP	Table 3.3(1) CL 5.6.1.1.2[c] CL 5.6.1.1.1(b)

RC Pad: Reinforcement:

Reactions			Footing				
		LHS	RHS	Using square f	ooting of size=	1.00 m	
				¢	bc	0.5	
Dead	d (kn) =	10.9kN	10.9kN	q	u	200 kPA	
Live	e (kn) =	25.8kN	25.8kN		LHS	RHS	
Wine	d (kn) =	0.0kN	0.0kN	fq (wkg) kPa =	36.7 kPA	36.7 kPA	
Rult (1.2G-	+1.5Q) =	51.8kN	51.8kN	fq (ULS) kPa =	51.8 kPA	51.8 kPA	
(0.9G+W	/u)=	9.8kN	9.8kN				
mmary							
Beam	Location: Bea	m 01 Design					
Be	eam Size:	410 UB 53.7		Span	8.40 n	n	
:	Supports:	89x5 SHS					

= Span / 1881

= Span / 707

= Span / 965

= Span / #DIV/0!

Dead = 4.5mm

 $G+\psi_sQ = 11.9mm$

 $W_s = 0.0mm$

 $G+\psi_LQ = 8.7mm$

MemDes Calculations @ 17:04:48 15-11-2021 by NAM Project : 136 Morrinsville Road Description : 90x6 SHS Section: 089x089x6.0 SHS Grade 350 Major Axis Bending Design Action $M_{x}^{*} = 3.0 \text{ kNm}$ User provided value for $\alpha_m = 1.00$ $\alpha_{s} = 1.01$ $\alpha_{\rm m}$ $\alpha_{\rm s} >= 1.0$, => Segment Fully Restrained $M_{bx} = M_{sx} = 19.81 \text{ kNm}$ Major axis capacity Ratio = $M_{X}^{*} / \phi M_{bx}$ = 0.17, ---- OK ----Shear Calculations (Unstiffened Web) Design Action $V_{x}^{*} = 0.0 \text{ kN}$ Nominal Shear Yield capacity $V_w = 194.0 \text{ kN}$ $\alpha_v = 29.16 \ge 1.0 \Longrightarrow$ full web shear capacity $V_u = V_w = 194.0 \text{ kN}$ Shear capacity ratio = $V_X^* / \phi V_u$ ---- OK ----= 0.00.Axial Calculations Design Action $N_d = 52.0$ kN [Comp], LeAxx = 3.00 m, LeAxy = 3.00 m = 654.5 kNMajor axis buckling : Minor axis buckling : Minimum Capac. $N_c min = 360.0$ Axial buckling capac. Ratio = $N_d / \phi N_c min$ = 0.160,---- OK ----Combined Actions Checks Clause 8.3.3/4 : $M_{ry} = M_{sy} (1 - (N^* / \phi N_s)) * 1.18, = < M_{sy} [Alt. Prov. OK]$ = 19.8 Load / Capacity Ratio = $M_{X}^{*} / (0.9 M_{X}^{r})$ = 0.17. ---- OK ----Clause 8.4.2.2 : Major : $M_{ix} = 16.6$ Load / Capacity Ratio = $M_{m}^* / \phi M_i$ = 0.200---- OK --====== SUMMARY = **** U.L.S. Capacity Check Passed, Load Cap. Ratio = 0.20

SESOC MemDes v 3.8.2 : Calculations by NAM Project : 136 Morrinsville Road at 5:04:48 pm on 15/11/2021 Description : 90x6 SHS

JOB No . 12 8 4 3

Page 66

PAGE

BY NAM

JOB SH26 126 MORRINSVILLE ROAD

BRAM 02 DESIGN		
ADOPT THE FOLLOWIN	6 LOADS	
DEAD LOAD FLOOR	Grieger O.S. KPO	
LIVE LOAD FLOOR	Que = 1.5 HPO	
TRIBUTARY WIOTH	Btrib = 2.2 m	
DEAD LOAD PECK	Gdern oskPa	
LIVE LOBO DECK	Quera = 20 kPa	
TRIBUTARY WISTH	0	
OFAO LOAD WALL	Gweil & o. 4 kPa	
TRIBUTARY HEIGHT	H _{selb} = 2.8 m	
SPAN LENGIN	L. = 6.0.	
REFOR TO THE ATTACH	O SPREADSMEET FOR FULL CALCULATIONS	
REFER TO THE ATTACH	O SPREADSMEET FOR FULL CALCULATIONS	
	O SPREADSMEET FOR FULL CALCULATIONS	
	O SPREADSMEET FOR FULL CALCULATIONS	
	O SPREADSMEET FOR FULL CALCULATIONS	
	O SPREADSMEET FOR FULL CALCULATIONS	
	O SPREADSMEET FOR FULL CALCULATIONS	
	O SPREADSMEET FOR FULL CALCULATIONS	
	O SPREADSMEET FOR FULL CALCULATIONS	
	O SPREADSMEET FOR FULL CALCULATIONS	
	O SPREADSMEET FOR FULL CALCULATIONS	
	O SPREADSMEET FOR FULL CALCULATIONS	

A	ARNOLD &
-	JOHNSTONE

2015 LTD CONSULTING CEVEL & STRUCTURAL ENGINEERS Job 136 MORRINSVILLE ROAD

Job No
Page
Ву
Date

12843			
NAM			
02.06.2			

Beam	Design		
		Location:	

Beam 02 Design Beam 02 Design

Span = 6.00 m

Short Term Load Factor, ψ_{s} = 0.7 Long Term Load Factor, ψ_{L} = 0.4

UDL				Self Weight :	0.40 kN/m			
		Trib(m)	G	Q	W	W _G	W _Q	Ww
						0.00 kN/m	0.00 kN/m	
		3.00 m	0.40 kPA			1.20 kN/m	0.00 kN/m	
		2.20 m	0.50 kPA	1.50 kPA		1.10 kN/m	3.30 kN/m	
	Deck	1.50 m	0.50 kPA	2.00 kPA		0.75 kN/m	3.00 kN/m	
						0.00 kN/m	0.00 kN/m	
								0.00 kN/m
	TOTAL					3.45 kN/m	6.30 kN/m	0.00 kN/m
			UDL (ULS), ki			UDL (SLS), kN/		
			1.2G+1.50			G+ψ _s Q =		
			0.9G+W	u= 3.11		G+ψ _L Q =		no roof live load
						Ws =	0.00	
Point Load	At Position A=		(Measured from	LHS)				
		Trib(m ²)	G	Q	W	W _G	W _Q	Ww
		1110(111)	9	Q	vv	0.00kN	0.00kN	VVW
						0.00kN	0.00kN	
						0.00kN	0.00kN	
						0.00kN	0.00kN	
						0.00kN	0.00kN	
						0.000	0.000	0.00kN
	TOTAL					0.00kN	0.00kN	0.00kN
			100.15					
			1.2G+1.50			$G + \psi_s Q =$		<i>.</i>
			0.9G+W	u= 0.00		G+ψ _L Q =		no roof live load
						Ws =	0	
Bending Moment								
	Load Case	Mu*						
		C4 4C LNI		Critics	al Bending Moment	= 61 16 kNm		
	12G+150 =	b) in kinm						
	1.2G+1.5Q = 0.9G+Wu =			Chuce				

-			P	ob No 'age	12843	
VSULTIN	IG CIVIL & STRUCTURAL ENGINEER 136 MORRINSVILLE ROAD	5		y ate	NAM 02.06.2021	
. T ime ha						
/ TIMDe	er Section					NZS3603
	Width (b) = 90 mm	$L_{av} = 4.0$	10 m	Grade	Hyspan	
	Depth (d) = 360 mm			φ _f =	0.8	CL 2.5
				k ₁ =	0.8	Table 2.4
				k ₂ (defl) =	2.0	Table 2.5
	$\phi M_n = \phi k_1 k_4 k_5 k_8$	f _b Z _{xx}		k ₄ =	1	Table 2.7
	= 42.29 kNr	m < Mu* therefore No G	iood	k ₅ =	1.000	Eq 2.5
				k ₈ =	0.81	Table 2.8
				f _b =	42 MPa	
					13.2 GPa	
		5 4 40.0			17.71	Eq 3.5
	Deflection :	Dead = 12.6 mm	= Span / 4			
		G+ψ _s Q = 28.7 mm G+ψ _L Q = 43.6 mm	= Span / 2			
		$W_{s} = 0.0 \text{ mm}$	= Span / 1			
		w _s = 0.0 mm	= Span / #	DIV/0:		
Steel	Section					
	Section	I _{xx} Z _{xx}				NZS3404
	300 PFC 40.1 72	40x10^6mm4 564x10^3mm3		f _y =	300 MPa	
				φ _f =	0.9	Table 3.3(1)
	$\phi M_{sx} = \phi Z_{xx} f_y$			E =	200 GPa	
	= 152.28	> Mu* therefore O.K		α	, 0.913	CL 5.6.1.1.2[c]
				α,	1.130	CL 5.6.1.1.1(b)

	1 34 1 44 9					
	= 152.28	> Mu* therefore O.K		α _s	0.913	CL 5.6.1.1.2[c]
				α _m	1.130	CL 5.6.1.1.1(b)
					PP	End Restraint Table 5.6.3(1)
	Segment Length	$0.60 \text{ m} \qquad L_e = .k_t .k_r .k_l L$	1.20 m	k	2.00	Twist restraint factors Tb 5.6.3 (1)
				k _r	1.00	Rotation restraint factors Tb 5.6.3 (3)
	φM _{bx} = 152.28 kNm			k _i	1.00	Load height factors Tb 5.6.3 (2)
φM	$a_{bx} = \alpha_m \alpha_s M_{sx} \le M_{sx}$ 152.28 kNm	> Mu* therefore O.K				
	Deflection :	Dead = 4.0mm	= Span / 1492			
		$G+\psi_sQ = 9.2mm$	= Span / 655			
		$G+\psi_LQ = 7.0mm$	= Span / 862			
		W _s = 0.0mm	= Span / #DIV/0!			

Reactions		Footing	1			
	LHS	RHS	Using square for	oting of size=	1.00 m	
-			φ _{bc}	(0.5	
Dead (kn) =	10.4kN	10.4kN	q _u	2	200 kPA	
Live (kn) =	18.9kN	18.9kN		LHS	RHS	
Wind (kn) =	0.0kN	0.0kN	fq (wkg) kPa =	29.3 kPA	29.3 kPA	
Rult (1.2G+1.5Q) =	40.8kN	40.8kN	fq (ULS) kPa =	40.8 kPA	40.8 kPA	
(0.9G+Wu)=	9.3kN	9.3kN				
nmary						
Beam Location: B	eam 02 Design					
Beam Size:	300 PFC 40.1		Span	6.00 m		
Supports:	75x5 SHS		•			
RC Pad:						

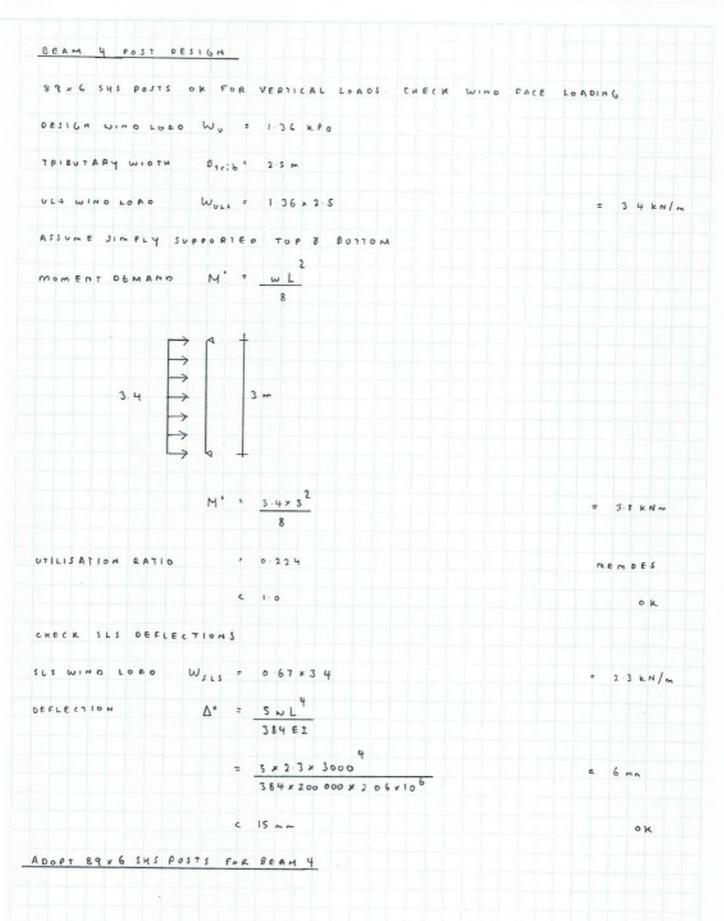
CONSULTING CIVIL Job	RNOLD & CHNSTON 2015 LTD IL 6 STRUCTURAL 136 MORRINSVIL	ENGINEERS			Job No Page By Date	12843 NAM 09.08.2021		
Beam Design	Location:	Beam 03 Design Beam 03 Design						
		= 5.00 m						
	₋oad Factor,ψ _s = oad Factor, ψ _L =							
UDL				Self Weight :	0.25 kN/m			
		Trib(m)	G	Q	W	W _G	W _Q	Ww
	Floor	3.70 m	0.50 kPA	1.50 kPA		0.00 kN/m 0.00 kN/m 1.85 kN/m 0.00 kN/m 0.00 kN/m	0.00 kN/m 0.00 kN/m 5.55 kN/m 0.00 kN/m 0.00 kN/m	
	TOTAL					2.10 kN/m	5.55 kN/m	0.00 kN/m 0.00 kN/m
			UDL(ULS),ki 1.2G+1.50 0.9G+W	Q= 10.85		UDL (SLS), kN/ G+ψ _s Q = G+ψ _L Q = Ws =	5.99 4.32	no roof live load
Point Load	At Position A=		(Measured from	LHS)				
		Trib(m ²)	G	Q	W	W _G	W _Q	Ww
	TOTAL					0.00kN 0.00kN 0.00kN 0.00kN 0.00kN	0.00kN 0.00kN 0.00kN 0.00kN 0.00kN 0.00kN	
			1.2G+1.5 0.9G+W			G+ψ _s Q = G+ψ _L Q = Ws =	0.00 0.00	no roof live load
Bending Moment	Load Case 1.2G+1.5Q =			Critica	al Bending Momer	ıt = 33.89 kNm		
	0.9G+Wu =			0.1100	g			

	JOHNSTONE 2015 LTD				Job No Page	12843	
SULTING	CIVIL & STRUCTURAL E	GINEERS			By	NAM	
	136 MORRINSVILLE	ROAD			Date	09.08.2021	
/ Timbei	r Section						
							NZS3603
	Width (b) = 90		$L_{ay} = 3.$	40 m		Grade : Hyspan	
	Depth (d) = 2	90 mm				$\varphi_f = 0.8$	CL 2.5
						$k_1 = 0.8$	Table 2.4
					k ₂	(defl) = 2.0	Table 2.5
	$\phi M_n = \phi$	$k_1k_4k_5k_8f_bZ_{xx}$				k ₄ = 1	Table 2.7
	= 3	1.38 kNm	< Mu* therefore No	Good		k ₅ = 1.000	Eq 2.5
						k ₈ = 0.93	Table 2.8
						f _b = 42 MPa	
						E = 13.2 GPa	
						S ₁ = 14.52	Eq 3.5
	Deflection :		Dead = 7.1 mm	= Span	/ 706		
			+ψ _s Q = 20.2 mm	= Span	/ 248		
		G	+ψ _L Q = 29.1 mm	= Span	/ 172		
			W _s = 0.0 mm	= Span	/ #DIV/0!		
Steel	Section						
	Section	I _{xx}	Z _{xx}				NZS3404
	230 PFC 25.1	26.80x10^6mm4	4 271x10^3mm3			f _y = 300 MPa	
						$\varphi_f = 0.9$	Table 3.3(1)
	$\phi M_{sx} = \phi$	Z _{xx} f _y				E = 200 GPa	
	= 73	3.17	> Mu* therefore O.H	(a _s 0.922	CL 5.6.1.1.2[c]
						α _m 1.130	CL 5.6.1.1.1(b)

			α _m 1.130	CL 5.6.1.1.1(b)
			PP	End Restraint Table 5.6.3(1)
Segment Length	0.60 m $L_e = .k_t.k_r.k_lL$	0.96 m	k _t 1.60	Twist restraint factors Tb 5.6.3 (1)
			k _r 1.00	Rotation restraint factors Tb 5.6.3 (3)
φM _{bx} = 73.17 kNm			k _l 1.00	Load height factors Tb 5.6.3 (2)
$M_{bx} = \alpha_m \alpha_s M_{sx} \le M_{sx}$ 73.17 kNm	> Mu* therefore O.K	Σ.		
Deflection :	Dead = 3.2mm	= Span / 1568		
	G+ψ _s Q = 9.1mm	= Span / 550		
	$G+\psi_LQ = 6.6mm$	= Span / 762		
	$W_s = 0.0mm$	= Span / #DIV/0!		

 ϕM_{bx}

Reactions		Footing				
	LHS	RHS	Using square foo	ting of size=	1.00 m	
-			Φ_{bc}		0.5	
Dead (kn) =	5.3kN	5.3kN	q _u		200 kPA	
Live (kn) =	13.9kN	13.9kN		LHS	RHS	
Wind (kn) =	0.0kN	0.0kN	fq (wkg) kPa =	19.1 kPA	19.1 kPA	
Rult (1.2G+1.5Q) =	27.1kN	27.1kN	fq (ULS) kPa =	27.1 kPA	27.1 kPA	
(0.9G+Wu)=	4.7kN	4.7kN				
nmary						
Beam Location: E	eam 03 Design					
Beam Size:	230 PFC 25.1		Span	5.00 m		
Supports:	3/90x45 studs		- F -			
RC Pad:						
Reinforcement:						


CONSULTING CEV Job	RNOLD 8 OHNSTON 2015 LTD TIL 6 STRUCTURAL 136 MORRINSVIL	ENGINEERS			Job No Page By Date	12843 NAM 09.08.2021				
Beam Design	Location:	Beam 04 Design Beam 04 Design								
	Span =	5.20 m								
	Load Factor,ψ _s = .oad Factor, ψ _L =									
UDL				Self Weight :	0.25 kN/m					
		Trib(m)	G	Q	W	W _G	W _Q	W _W		
NOTE BEAM 4 NO	Roof Wall	3.60 m 6.00 m	0.45 kPA 0.40 kPA	0.25 kPA		1.62 kN/m 2.40 kN/m 0.00 kN/m	0.90 kN/m 0.00 kN/m 0.00 kN/m			
LONGER SUPPORTS A DECK. OK BY	Deck	0.50 m	0.50 kPA	2.00 kPA		0.25 kN/m 0.00 kN/m	1.00 kN/m 0.00 kN/m	0.00 kN/m		
INSPECTION	TOTAL					4.52 kN/m	1.90 kN/m	0.00 kN/m		
Point Load	At Position A=		1.2G+1.5 0.9G+V (Measured fror	/u= 4.07		G+ψ _s Q = G+ψ _L Q = Ws =	4.92	no roof live load		
Point Load	AL POSILION A-	-	(measured from	п спој						
		Trib(m ²)	G	Q	W	W _G	W _Q	W _W		
						0.00kN 0.00kN 0.00kN 0.00kN 0.00kN	0.00kN 0.00kN 0.00kN 0.00kN 0.00kN			
	TOTAL					0.00101	0.001.01	0.00kN		
	TOTAL		1.2G+1.5 0.9G+V	GQ= 0.00 Vu= 0.00		0.00kN G+ψ _s Q = G+ψ _L Q = Ws =	0.00	0.00kN no roof live load		
Bending Moment	Load Case	e Mu*								
	1.2G+1.5Q = 0.9G+Wu =			Critica	al Bending Momer	nt = 27.97 kNm				

Date 09.08.20 $\phi_r = 0.8$ $k_1 = 0.8$ $k_2 (defl) = 2.0$ $k_4 = 1$ $k_5 = 1.000$ $f_b = 14$ MPa E = 6.7 GPa $S_1 = 6.10$ Span / 148 Span / 114 Span / 68 Span / #DIV/0!		12843	Job No Page		SINEEDS	2015 LTD 2015 LTD ENG CEVIL & STRUCTURAL ENG	
$\begin{array}{c} \phi_{f}=0.8\\ k_{1}=0.8\\ k_{2}(defl)=2.0\\ k_{4}=1\\ k_{5}=1.000\\ k_{8}=1.00\\ f_{b}=14MPa\\ E=6.7GPa\\ S_{1}=6.10\\ \end{array}$ Span / 148 Span / 148 Span / 148 Span / 148 Span / 48 Span / #DIV/0! $f_{y}=300MPa\\ \phi_{f}=0.9\\ \end{array}$	1	NAM 09.08.2021	By Date			136 MORRINSVILLE F	
$\begin{array}{c} \phi_{f}=0.8\\ k_{1}=0.8\\ k_{2}(defl)=2.0\\ k_{4}=1\\ k_{5}=1.000\\ k_{8}=1.00\\ f_{b}=14MPa\\ E=6.7GPa\\ S_{1}=6.10\\ \end{array}$ Span / 148 Span / 148 Span / 148 Span / 148 Span / 48 Span / #DIV/0! $f_{y}=300MPa\\ \phi_{f}=0.9\\ \end{array}$						ber Section	/ Timber
$\begin{array}{c} \phi_{f}=0.8\\ k_{1}=0.8\\ k_{2}(defl)=2.0\\ k_{4}=1\\ k_{5}=1.000\\ k_{8}=1.00\\ f_{b}=14MPa\\ E=6.7GPa\\ S_{1}=6.10\\ \end{array}$ Span / 148 Span / 148 Span / 148 Span / 148 Span / 48 Span / #DIV/0! $f_{y}=300MPa\\ \phi_{f}=0.9\\ \end{array}$	NZS3603						
$\begin{array}{c} \mbox{$k_1=0.8$}\\ \mbox{$k_2$ (defl) = 2.0$}\\ \mbox{$k_4=1$}\\ \mbox{$k_5=1.000$}\\ \mbox{$k_8=1.00$}\\ \mbox{$f_b=14$ MPa$}\\ \mbox{$E=6.7$ GPa$}\\ \mbox{$Span / 148$}\\ \mbox{$Span / 114$}\\ \mbox{$Span / 4DIV/0!$}\\ \end{array}$		· · · · · · · · · · · · · · · · · · ·		$L_{ay} = 0.60 \text{ m}$		Width (b) = 90	
$k_{2} (defl) = 2.0$ $k_{4} = 1$ $k_{5} = 1.000$ $k_{8} = 1.00$ $f_{b} = 14 \text{ MPa}$ $E = 6.7 \text{ GPa}$ $S_{1} = 6.10$ Span / 148 Span / 114 Span / 68 Span / #DIV/0! $f_{y} = 300 \text{ MPa}$ $\phi_{f} = 0.9$	CL 2.5) mm	Depth (d) = 290	
$\begin{array}{c} k_4 = 1 \\ k_5 = 1.000 \\ k_8 = 1.00 \\ f_b = 14 \mbox{ MPa} \\ E = 6.7 \mbox{ GPa} \\ S_1 = 6.10 \\ \end{array}$	Table 2.4						
$\begin{array}{c} k_{5}=1.000\\ k_{8}=1.00\\ f_{b}=14\ MPa\\ E=6.7\ GPa\\ S_{1}=6.10\\ \end{array}$ Span / 148 Span / 114 Span / 68 Span / #DIV/0! $f_{y}=300\ MPa\\ \phi_{f}=0.9\\ \end{array}$	Table 2.5	. ,					
k ₈ = 1.00 f _b = 14 MPa E = 6.7 GPa S ₁ = 6.10 Span / 148 Span / 114 Span / 68 Span / #DIV/0! f _y = 300 MPa φ _f = 0.9	Table 2.7	•				$\phi M_n = \phi k_1$	
$f_b = 14 \text{ MPa} \\ E = 6.7 \text{ GPa} \\ S_1 = 6.10 \\ \text{Span / 148} \\ \text{Span / 114} \\ \text{Span / 68} \\ \text{Span / #DIV/0!} \\ f_y = 300 \text{ MPa} \\ \phi_f = 0.9 \\ \end{array}$	Eq 2.5	0		< Mu* therefore No Good	30 kNm	= 11.3	
E = 6.7 GPa S1 = 6.10 Span / 148 Span / 114 Span / 68 Span / #DIV/0! fy = 300 MPa of = 0.9	Table 2.8						
Span / 148 Span / 148 Span / 68 Span / #DIV/0! f _y = 300 MPa φ _f = 0.9							
Span / 148 Span / 114 Span / 68 Span / #DIV/0! f _y = 300 MPa φ _f = 0.9	Ea 2 5						
Span / 114 Span / 68 Span / #DIV/0! f _y = 300 MPa φ _f = 0.9	Eq 3.5	$S_1 = 0.10$	= Snan / 148	35.1 mm	Dead	Deflection :	
Span / 68 Span / #DIV/0! f _y = 300 MPa φ _f = 0.9			•	45.4 mm		Deneotion	
Span / #DIV/0! f _y = 300 MPa φ _f = 0.9			•	76.4 mm	10		
$\varphi_{\rm f} = 0.9$			= Span / #DIV/0	0.0 mm			
$\varphi_{\rm f} = 0.9$						el Section	Steel S
$\varphi_{\rm f} = 0.9$	NZS3404			Z _{xx}	I _{xx}	Section	
		f _y = 300 MPa		271x10^3mm3	26.80x10^6mm4	230 PFC 25.1	
E = 200 GPa	Table 3.3(1)	$\varphi_{f} = 0.9$					
α _s 0.9) 0 GPa	$\phi_{\rm f} = 0.9$ E = 20		> Mu* therefore O.K	_{xx} f _y	230 PFC 25.1 φM _{sx} = φ Z = 73.	

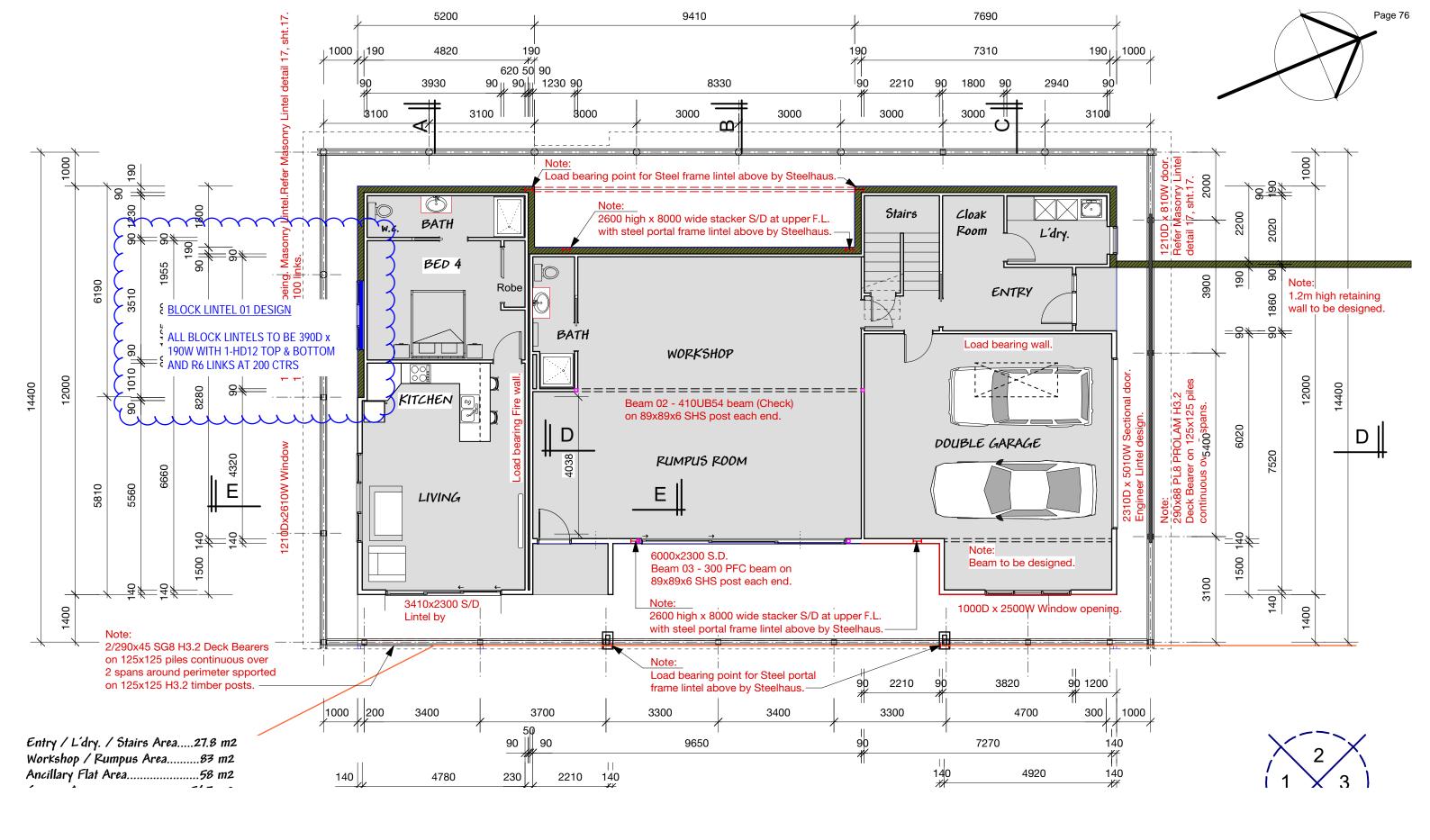
$\phi M_{sx} = \phi Z_{xx} f_{y}$			E = 200 GPa	
= 73.17	> Mu* therefore O.K		a _s 0.922	CL 5.6.1.1.2[c]
			a _m 1.130	CL 5.6.1.1.1(b)
			PP	End Restraint Table 5.6.3(1)
Segment Length	$0.60 \text{ m} \qquad L_{e} = .k_{t}.k_{r}.k_{l}L$	0.96 m	k _t 1.60	Twist restraint factors Tb 5.6.3 (1)
			k _r 1.00	Rotation restraint factors Tb 5.6.3 (3)
φM _{bx} = 73.17 kNm			k _l 1.00	Load height factors Tb 5.6.3 (2)
$\phi M_{bx} = \alpha_m \alpha_s M_{sx} \le M_{sx}$ 73.17 kNm	> Mu* therefore O.K			
Deflection :	Dead = 8.0mm	= Span / 648		
	$G+\psi_sQ = 10.4mm$	= Span / 500		
	$G+\psi_LQ = 8.7mm$	= Span / 595		
	$W_s = 0.0 mm$	= Span / #DIV/0!		

eactions		Footing		
	LHS	RHS	Using square footing of size=	1.00 m
			$\Phi_{\sf bc}$	0.5
Dead (kn) =	11.8kN	11.8kN	q _u	200 kPA
Live (kn) =	4.9kN	4.9kN	LHS	RHS
Wind (kn) =	0.0kN	0.0kN	fq (wkg) kPa = 16.7 kPA	16.7 kPA
Rult (1.2G+1.5Q) =	21.5kN	21.5kN	fq (ULS) kPa = 21.5 kPA	21.5 kPA
(0.9G+Wu)=	10.6kN	10.6kN		
imary				
Beam Location: Bea	am 04 Design			
Beam Size:	230 PFC 25.1		Span 5.20 m	
Supports:	3/90x45 studs			
RC Pad:				

BEAM 1 POST DESIGN

MemDes Calculations @ 17:51:11 09-08-2021 by NAM

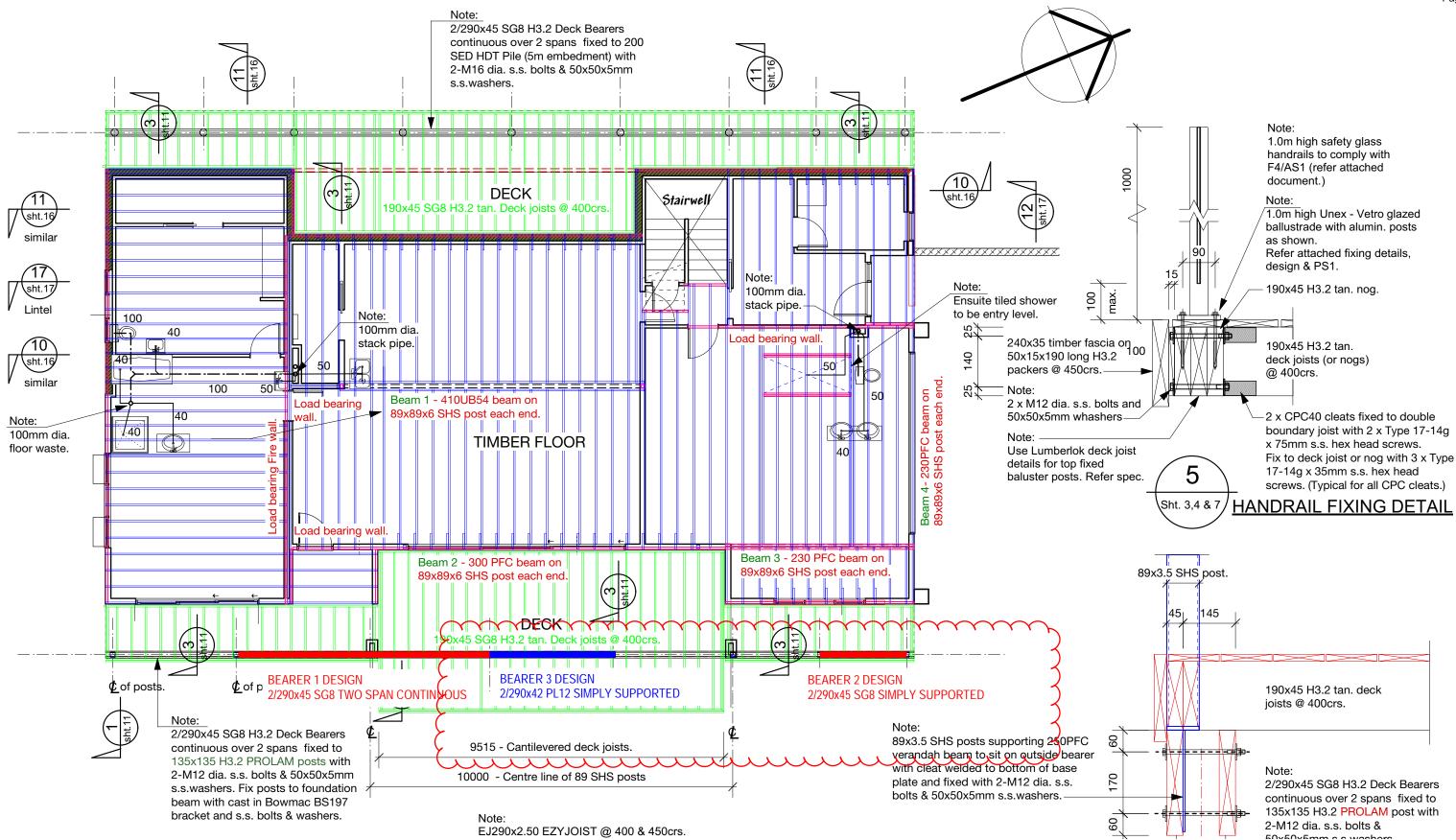
Project : 136 Morrinsville Road Description: 89x6 SHS Section: 089x089x6.0 SHS Grade 350 Major Axis Bending Design Action $M_{x}^{*} = 4.0 \text{ kNm}$ User provided value for $\alpha_m = 1.00$ $\alpha_{s} = 1.01$ $\alpha_m \quad \alpha_s >= 1.0, \Rightarrow$ Segment Fully Restrained $M_{bx} = M_{sx} = 19.81 \text{ kNm}$ Major axis capacity Ratio = $M_{X}^{*} / \phi M_{bx}$ ---- OK ----= 0.22,Shear Calculations (Unstiffened Web) Design Action $V_{x}^{*} = 0.0 \text{ kN}$ Nominal Shear Yield capacity $V_w = 194.0 \text{ kN}$ $\alpha_{\rm V} = 29.16 \ge 1.0 \Longrightarrow$ full web shear capacity $V_u = V_w = 194.0 \text{ kN}$ Shear capacity ratio = $V_x^* / \phi V_u$ ---- OK ----= 0.00, ===== SUMMARY **** U.L.S. Capacity Check Passed, Load Cap. Rativ = 0.22 OK -----


SESOC MemDes v 3.8.2 : Calculations by NAM Project : 136 Morrinsville Road at 5:51:11 pm on 9/08/2021 Description : 89x6 SHS

7. BLOCK LINTEL DESIGN

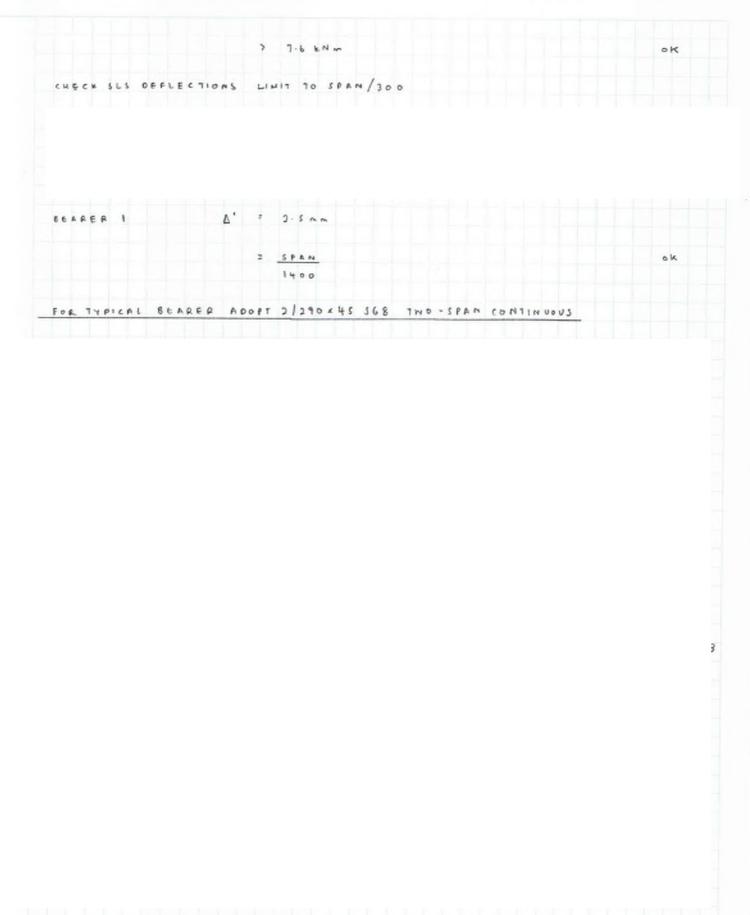
Ref: 12843

JOB 136 MORPINS VILLE ROAD

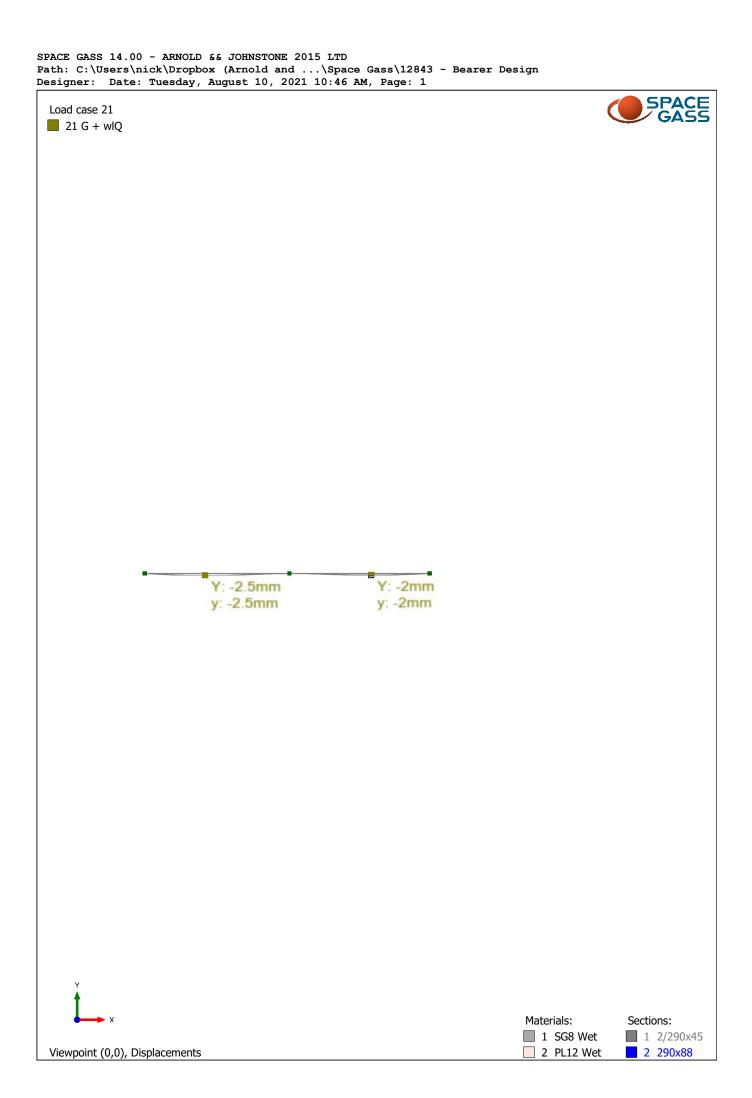

SLO (A LIN	118	L 01	1 0 6	116	D N	-																	
				LIN						1	~ 0		2	A	000	7	7 14 8	F	OLL		6 LO A O			
0011	GR		-					-						1	1									
		. 0		F	0				o ·	45	*	Pa	* 3	3.6	-							2	1 - 6	ku/m
0 e A 9	201	A 0	WAI		G	~~~	11 °	-	0	ч	k P	• •	3	0	~								1. 2	**/m
DEAO	LOA	•	0 E C 1	ĸ	(C de	ch		• •	s	k Pe	• •	0	· s ,								-	0.3	×N/m
OFAO	1.0 A	o f	LOOR		Ġ	2 610	or "		0.	5 1	e P a	×	2	5.	-							-	1.3	<u>k</u> N/m
0 4 3 d	LOA	0	6100	ĸ	C	5 61			6.	39	*	0 - 1	۹ >	2	2							2	1-6	un/m
TotA		A 0	Loi	. 0		6			1 - 6	• •	1.1	2 .	•	3	+ 1	3	+	1-	6			7	6.0	kn/m
LIVE	LO A	•	Roop		0	2.0	of		0.5	25	R D	• *	3 .	6								-	0	kN/m
LIVE	LOAD	D	eck		Q	dee	k *		2	0	k P		0	s								-	1.0	kn/w
LIVE	LOA	•	F 1 0 0	R	(2.			1 - 5	5 k	Pa	×	2.	5								-	3 .	s kN/m
TOTA	-	νE	LoAI	0		Q			0.1	q 4	1 - 1	o +	3	8								-	5.7	kN/m
ULS	LOAO	c A	5 16			E d			1.2		6.0	+	1-5	*	5 7								15.8	KH/m
FoR	A 2	-	SPAN	, A	001	P 1	As	P	ER		n 2 :	5 6	122	9	2	01	5	760	BLE	11.5				
A D . 1	P1 M	1 14	2 -	012		0 1	6	8 A	RS		R		20	•	5116	RI	PS			NOTE	- HD12 B	ARS HAVI	E BEE	N ADOPT
		+																						
																							17	
		+												-										
10																								
							-			r												*		

8. BEARER DESIGN

Ref: 12843


JOB .136 MORRINSVILLE ROAD

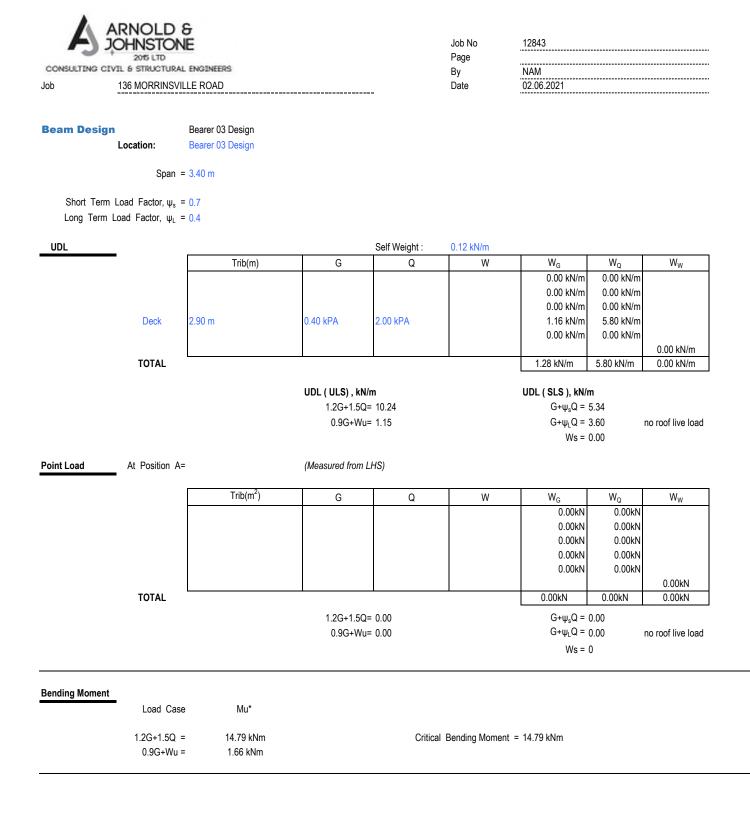
PROPERTY AND INCOME.	DESIGN													
DESIGN	PECK DEA	ARFRS	AS TN	O SPP	n co		. 200	CHECK	CRI	TICAL	LOAD	CASE	\$	
		6	deck.	Qdoc	k									
			-			-	_							
	1 1 1	V V V	V V	VV	4 1	v v	V							
	1 1 1	4 4 4	V V	4 4	* *	4 4	V	DEAR	E 8 1					
	5	¥ ¥ ¥	v v	* *	* *	4 4	2	D E A A	ER I					
	2 V V V	¥ ¥ ¥	4 4	**	* *	v v	2	DEAA	E R 1					
	2 4 4 2 1	¥ ¥ ¥ 3.4	v v 	**	3-3	v v	+	₿ E A A	ER I					
		¥ ¥ ¥ 3-4	v v 	<i>v v</i>	¥ ¥	v v	V -3 -+	D E A A	ER I					
DFAR L	+ + + 		-			V V	√ -≥ +	D E A A	E R 1				a.26	
DEAC L	4 4 4 		-	v v		1.5 .	* +	5 E A A	E R 1				0.75	k N/m
		Ga	eck 2	0.5	k Pa >			D E A A	E R 1					
	OPO DECK	Ga	eck 2	0.5	k Pa >			Ð E A A	8 R					k N / m K N / m
LIVE LO	DO DECK	G a	eck =	o · 5 2 · 0	k Pa >	ı,		5 # A A	ER I					
LIVE LO		G a	eck =	o · 5 2 · 0	k Pa >	ı,		5 E A A	ER 1					
LIVE LO	DEMANO	G J Q J	eck = eck =	0.5 2.0 7.6	k Pa > k Pa +	. 1-5,		D = A A	ER I					
LIVE LO	DO DECK	G J Q J	eck = eck =	0.5 2.0 7.6	k Pa > k Pa +	. 1-5,		Ð E A A	ER I					
LIVE LO MOMENT JRY 2	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	G J Q J N 368	eck = cck = 4 ⁴ = FoR	0.5 2.0 7.6 8 f A R	kPa > kPa , kNm ER	1 - 6 -		Ð E A A	ER 1					
LIVE LO MOMENT JRY 2	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	G J Q J N 368	eck = cck = 4 ⁴ = FoR	0.5 2.0 7.6 8 f A R	kPa > kPa , kNm ER	1 - 6 -		Đ E A A	ER 1					
LIVE LO MOMENT JEY 2 MOMENT	00 DECK 00 A A A A A A A A A A A A A A A A A A	G d Q d N S G 8 4 10	eck = cck = d ⁴ = FoR	0.5 2.0 7.6 8EAR ¢ k	kPa > kOa , kNm ER , kg f	1 - 6 -		Ð E A A	ER 1					
LIVE LO MOMENT JEY 2 MOMENT	00 DECK 00 A A A A A A A A A A A A A A A A A A	G d Q d N S G 8 4 10	eck = cck = d ⁴ = FoR	0.5 2.0 7.6 8EAR ¢ k	kPa > kOa , kNm ER , kg f	1 - 6 -		Ð E A A	ER I					
LIVE LO MOMENT JEY 2 MOMENT	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	G d Q d N S G 8 4 10	eck = cck = d ⁴ = FoR	0.5 2.0 7.6 8EAR ¢ k	kPa > kOa , kNm ER , kg f	1 - 6 -		Đ E A A	ER I					
LIVE LO MOMENT JEY 2 MOMENT	00 DECK 00 A A A A A A A A A A A A A A A A A A	G d Q d N S G 8 4 10	eck = 44 = 44 = 40 R 7 = 2 =	0-5 2.0 7-6 8EAR \$ 8EAR \$ 2 00 6	k Pa > k Pa , k N m E R L k 8 f	, 1.f,		5 E A A	ER I					
LIVE LO MOMENT JEY 2 MOMENT	00 DECK 00 A A A A A A A A A A A A A A A A A A	G d Q d N S G 8 4 10	eck = 44 = 44 = 40 R 7 = 2 =	0-5 2.0 7-6 8EAR \$ 8EAR \$ 2 00 6	k Pa > k Pa , k N m E R L k 8 f	, 1.f,		Đ E A A	ER I				3.0	K N / W
LIVE LO MOMENT JEY 2 MOMENT	00 DECK 00 A A A A A A A A A A A A A A A A A A	G d Q d N S G 8 4 10	eck = 44 = 44 = 40 R 7 = 2 =	0.5 2.0 7.6 8 E A A 4 k <u>b d</u> 6	k Pa > k Pa , k N m E R L k 8 f	, 1.f,		5 E A A	ER I				3.0	
LIVE LO MOMENT JEY 2 MOMENT	00 DECK 00 A A A A A A A A A A A A A A A A A A	G d Q d N S G 8 4 10	eck = 44 = 44 = 40 R 7 = 2 =	0-5 2.0 7-6 8EAR \$ 8EAR \$ 2 00 6	k Pa > k Pa , k N m E R L k 8 f	, 1.f,		5 E A A	ER 1				3.0	K N / W
LIVE LO MOMENT JEY 2 MOMENT	00 DECK 00 A A A A A A A A A A A A A A A A A A	G J Q J 3 G 8 4 M	Pck = eck = 4 ⁴ = FoR 7 = 7 =	0.5 2.0 7.6 8 E A B 4 k <u>b d</u> 6 <u>9 o x</u>	k Pa > k Pa > k N m E R L k 8 1 290 6	, 1.f,	•	D = A A				-	3.0	× 10 m



JOB 136 MORRINSVILLE ROAD

DATE ... 10 . 08 . 2021

	ruesday, August 10, 202	1 10:45 AM, Page: 1		
Load case 10			(SPACE GASS
10 1.2G + 1.5Q				<u> </u>
	-7.6kNm -7	7.6kNm		
	4.5kNm	4kNm		
	4.000			
Y				C
×			Materials:	Sections:
Viewpoint (0,0), Morr			2 PL12 Wet	2 290x88



CONSULTENG CE	2015 LTD 2015 LTD VEL & STRUCTURAL 136 MORRINSVIL	ENGINEERS			Job No Page By Date	12843 NAM 02.06.2021		
Beam Desigi	n Location:	Bearer 02 Design Bearer 02 Design						
	Span =	2.40 m						
	Load Factor, ψ_s = Load Factor, ψ_L =							
UDL	_			Self Weight :	0.13 kN/m			
		Trib(m)	G	Q	W	W _G 0.00 kN/m 0.00 kN/m	W _Q 0.00 kN/m 0.00 kN/m	Ww
	Deck	1.00 m	0.40 kPA	2.00 kPA		0.00 kN/m 0.40 kN/m 0.00 kN/m	0.00 kN/m 2.00 kN/m 0.00 kN/m	
	TOTAL					0.53 kN/m	2.00 kN/m	0.00 kN/m 0.00 kN/m
Point Load	At Position A=		UDL (ULS) , k 1.2G+1.5 0.9G+W (Measured from	Q= 3.64 /u= 0.48		UDL (SLS), kN/ G+ ψ_s Q = G+ ψ_L Q = Ws =	1.93 1.33	no roof live loa
	-							
		Trib(m ²)	G	Q	W	W _G 0.00kN 0.00kN 0.00kN 0.00kN 0.00kN	W _Q 0.00kN 0.00kN 0.00kN 0.00kN 0.00kN	
	TOTAL					0.00kN	0.00kN	0.00kN
			1.2G+1.5 0.9G+W	Q= 0.00 /u= 0.00		G+ψ _s Q = G+ψ _L Q = Ws =	0.00	no roof live loa
Bending Moment								
	Load Case 1.2G+1.5Q = 0.9G+Wu =	2.62 kNm		Critic	al Bending Momer	nt = 2.62 kNm		

SULTING CI	2015 LTD VIL & STRUCTURAL ENGINEERS	3	Page By	NAM	
	136 MORRINSVILLE ROAD		Date	02.06.2021	
Timber Se	ection				
				0 1 000111	NZS3603
	Width (b) = 90 mm	$L_{ay} = 2.4$	10 m	Grade : SG8 Wet	01.05
	Depth (d) = 290 mm			$ \phi_f = 0.8 $ $ k_1 = 0.8 $	CL 2.5 Table 2.4
			k-	(defl) = 2.0	Table 2.4 Table 2.5
	$\phi M_n = \phi k_1 k_4 k_5 k_8 f_b$	7	K <u>2</u>	$k_4 = 1$	Table 2.7
	$\psi_{1}v_{1} - \psi_{K_{1}}\kappa_{4}\kappa_{5}\kappa_{8}v_{5}$ = 9.26 kNm	∠ _{xx} > Mu* therefore O.K		$k_4 = 1$ $k_5 = 1.000$	Eq 2.5
	- 9.20 KNIII			$k_8 = 0.98$	Table 2.8
				f _b = 12 MPa	
				E = 5.5 GPa	
				S ₁ = 12.20	Eq 3.5
	Deflection :	Dead = 0.2 mm	= Span / 10546		
		$G+\psi_sQ = 0.8 \text{ mm}$	= Span / 2896		
		$G+\psi_LQ = 1.1 \text{ mm}$	= Span / 2101		
		W _s = 0.0 mm	= Span / #DIV/0!		
Steel Sect	tion				
	Section	I _{xx} Z _{xx}			NZS3404
		0x10^6mm4 221x10^3mm3		f _v = 300 MPa	
				$\phi_{f} = 0.9$	Table 3.3(1)

$\Psi^{W}sx \Psi \rightharpoonup xx y$			L -	200 01 0	
= 59.67	> Mu* therefore O.K		α _s	0.471	CL 5.6.1.1.2[c]
			a _m	1.130	CL 5.6.1.1.1(b)
				PP	End Restraint Table 5.6.3(1)
Segment Length	3.60 m $L_e = .k_t \cdot k_r \cdot k_l L$	4.00 m	k _t	1.11	Twist restraint factors Tb 5.6.3 (1)
			k _r	1.00	Rotation restraint factors Tb 5.6.3 (3)
φM _{bx} = 59.67 kNm			k _l	1.00	Load height factors Tb 5.6.3 (2)
$\phi M_{bx} = \alpha_m \alpha_s M_{sx} \le M_{sx}$ 31.78 kNm	> Mu* therefore O.K				
Deflection :	Dead = 0.1mm	= Span / 40042			
	$G+\psi_sQ = 0.2mm$	= Span / 10996			
	$G+\psi_LQ = 0.2mm$	= Span / 15957			
	W _s = 0.0mm	= Span / #DIV/0!			

eactions			Footing				
	LHS	RHS		Using square f	ooting of size:	= 1.00 m	
				¢	bc	0.5	
Dead (kn) =	0.6kN	0.6kN		q	J	200 kPA	
Live (kn) =	2.4kN	2.4kN			LHS	RHS	
Wind (kn) =	0.0kN	0.0kN		fq (wkg) kPa =	3.0 kPA	3.0 kPA	
Rult (1.2G+1.5Q) =	4.4kN	4.4kN		fq (ULS) kPa =	4.4 kPA	4.4 kPA	
(0.9G+Wu)=	0.6kN	0.6kN					
nmary							
Beam Location: Bea	arer 02 Design						
Beam Size:	90	x 290mm	SG8 Wet	Span	2.40 ı	n	
Supports:	2/90x45 studs						
RC Pad:							

	2015 LTD 8 STRUCTURAL ENG	INFERS.			Job No Page	12843	
	36 MORRINSVILLE F				By Date	NAM 02.06.2021	
Timber Section	on						
			1	- 0.00			NZS3603
	Width (b) = 84 r		L _{ay}	= 0.60 m		Grade : PL12 Wet	CL 2.5
	Depth (d) = 290	mm				$ \phi_f = 0.8 $ $ k_1 = 0.8 $	CL 2.5 Table 2.4
					ka	(defl) = 2.0	Table 2.5
	φM _n = φk₁ł	2 k k f 7			12	$k_4 = 1$	Table 2.5
		∿₄∿₅∿ଃካ₀∠ _{xx})7 kNm	> Mu* therefore	o K		$k_4 = 1$ $k_5 = 1.000$	Eq 2.5
	- 15.0		> wu therefore	U.N		$k_5 = 1.000$ $k_8 = 1.00$	Eq 2.5 Table 2.8
						f _b = 20 MPa	
						E = 9.2 GPa	
						$S_1 = 6.56$	Eq 3.5
	Deflection :	De	ead = 1.4 mm	= 5	Span / 2398		
		G+ų	l₅Q = 5.9 mm	= 5	Span / 575		
		G+ų	LQ = 8.0 mm	= 8	Span / 426		
			W _s = 0.0 mm	= {	Span / #DIV/0!		
Steel Section	l						
	Section	I _{xx}	Z _{xx}				NZS3404
	200 PFC 22.9	19.10x10^6mm4	221x10^3mm3			f _y = 300 MPa	
						$\phi_{\rm f} = 0.9$	Table 3.3(1)

$\phi M_{sx} = \phi Z_{xx} f_y$			E = 200 GPa	
= 59.67	> Mu* therefore O.K		α _s 0.471	CL 5.6.1.1.2[c]
			α _m 1.130	CL 5.6.1.1.1(b)
			PP	End Restraint Table 5.6.3(1)
Segment Length	3.60 m $L_e = .k_t .k_r .k_l L$	4.00 m	k _t 1.11	Twist restraint factors Tb 5.6.3 (1)
			k _r 1.00	Rotation restraint factors Tb 5.6.3 (3)
φM _{bx} = 59.67 kNm			k _l 1.00	Load height factors Tb 5.6.3 (2)
$\phi M_{bx} = \alpha_m \alpha_s M_{sx} \le M_{sx}$ 31.78 kNm	> Mu* therefore O.K			
Deflection :	Dead = 0.6mm	= Span / 5831		
	$G+\psi_sQ = 2.4mm$	= Span / 1398		
	G+ψ _L Q = 1.6mm	= Span / 2073		
	W _s = 0.0mm	= Span / #DIV/0!		

Reactions			Footing				
	LHS	RHS		Using square	footing of size=	1.00 m	
—				d	• _{bc}	0.5	
Dead (kn) =	2.2kN	2.2kN		q	lu	200 kPA	
Live (kn) =	9.9kN	9.9kN			LHS	RHS	
Wind (kn) =	0.0kN	0.0kN		fq (wkg) kPa =	12.0 kPA	12.0 kPA	
Rult (1.2G+1.5Q) =	17.4kN	17.4kN		fq (ULS) kPa =	17.4 kPA	17.4 kPA	
(0.9G+Wu)=	2.0kN	2.0kN					
mary							
Beam Location: Be	earer 03 Design						
Beam Size:	84	x 290mm	PL12 Wet	Span	3.40 n	1	
Supports:	3/90x45 studs						
RC Pad:							
Reinforcement:							

Proposed Cameron Residence At Lot 2 136 SH 26, Newstead

Reference: 210176

Document

STRUCTURAL CALCULATION

Contents

S1.0 Structurl Summary	1
S2.0 Key Plans	3
S3.0 Design Loadings	4
S4.0 Roof Framing	8
S5.0 Wall Framing	82
S6.0 Floor Framing	84
S7.0 Miscellaneous	

Prepared by: BZ Reviewed by: HT

Revision:ADate:November 2Status:Building consent

Hamilton City Council

BUILDING UNIT APPROVED

S1.0 Structurl Summary

Building Description

The proposed two storey dwelling is a lightsteel framed structure with lightweight longrun iron roofing with lightweight vertical weatherboard cladding. The building is found on concrete slab foundation supported on SED driven piles. This PS1 and calculation covers the lightsteel framing and the roof beams only. The rest of the structural elements and overall bracing are designed by others.

Scope

- Lightsteel framing include roof trusses, lintels and wall studs.
- First Floor roof beams and posts •
- Lightsteel midfloor joists
- Lightsteel connection for balustrade
- Exclude: Overall bracing design, ground floor structural steels beams and posts, foundation • and retaining wall, timber decks, timber beams are designed by others.

Design Codes

- Elements designed to support loadings of AS/NZS 1170-2002.
- Light steel designed to AS/NZS 4600-2018 •
- Light steel framing designed to NASH Standard Part 1 V2: October 2010 and NASH Standard Part 2: May 2019.
- Steel designed to NZS 3404-1997

Design Loadings

- Building Important Level •
- = IL 2
- Design life = 50 years • = 1.5kPa (Domestic floor)
- Floor Live Loads
- Design Wind Speed = 42.4m/s (High Wind Zone)
- Seismic Z-Factor = 0.16 (Hamilton)
 - Seismic Soil Class = D
- Ground Snow Load = 0kPa •

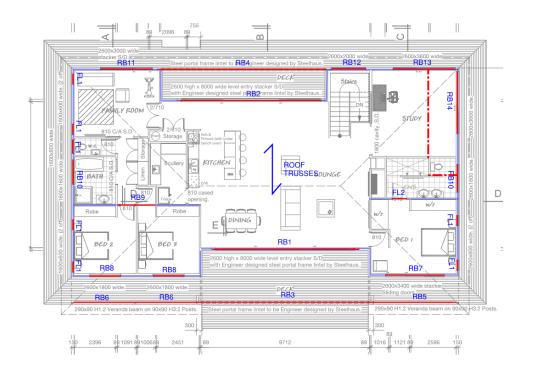
Corrosion

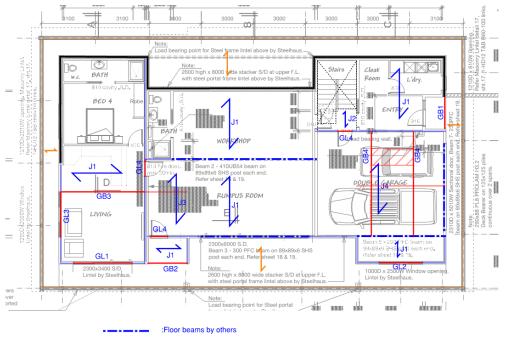
•

- External Areas: Not applicable, all design elements are enclosed
- Sheltered Areas:

	Timber	Structural Steel	Lightsteel	Concrete
Zone	В	C1	C2	B1
Proviosion	N/A	ALK1	Z275	N/A

Construction Monitoring


The design is based on the verification of specific design aspects of the construction by a suitably qualified Chartered Professional Engineer or by a qualified building inspector from the local authority in accordance with ACENZ/IPENZ level CM 3.


- Superstructure pre-line inspections of lightsteel framing and connections.
- Superstructure pre-line inspections of SED beams, posts and connections.

S2.0 Key Plans

- :Lightsteel load bearing walls
 - :Load bearing lintel/beam
 - :Timber balcony by others

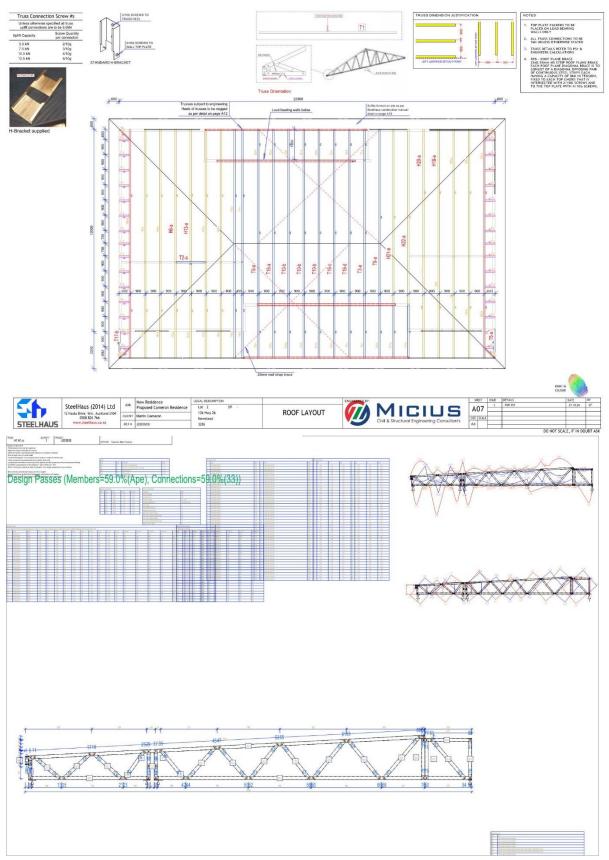
Ref. 210176

S3.0 Design Loadings

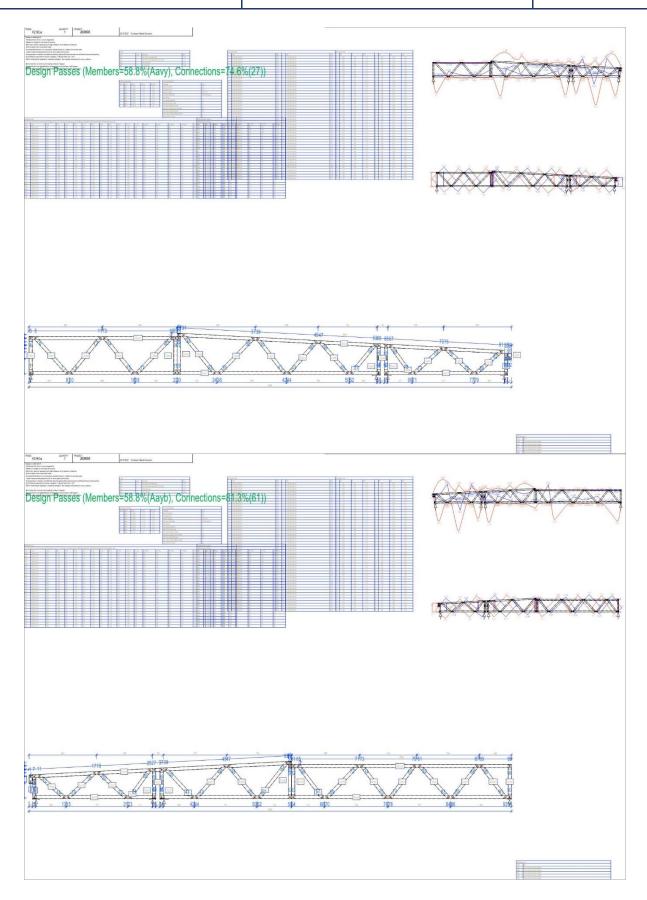
	Roof Type A													
	Dead		BMT S	teel ro	oofing	+ steel p	urlins			=	0.07	kPa		
		Ligh	t truss	ses @	900crs					=	0.05	kPa		
		Ceil	ing Ba	tterns	+ 13m	m Gib Ce	iling +	Ser	vices	=	0.15	kPa		
	Live	Non	acces	iable						=	0.25	kPa		
								-	Гotal	DL =	0.27	kPa		
										LL =	0.25	kPa		
	Floor Type	4												
	Dead	19m	ım par	ticleb	oard fl	ooring				=	0.20	kPa		
		Stee	el Joist	s @ 4	50crs					=	0.15	kPa		
		Ceil	ing Ba	tterns	+ 13m	m Gib Ce	iling +	Ser	vices	=	0.15	kPa		
	Live	Self	-conta	in dw	elling					=	1.50	kPa		
								-	Fotal	DL =	0.50	kPa		
										LL =	1.50	kPa		
	External Wa	all												
	Dead	JΗ w	veathe	erboar	d over	batten +	ТВ			=	0.26	kPa		
				ls @ 60						=	0.07	kPa		
		10m	ım Gib	wall I	ining					=	0.09	kPa		
	Live									=	0.00	kPa		
								-	Fotal	DL =	0.42	kPa		
										LL =	0.00	kPa		
mp	ortant Lev	el & C	Desigr	n Life										
	Building Im	portan	t Leve	=		2	C	omm	ent:	Selt-	contain	t reside	ntial d	wellin
	Design Life			=	5	50 years								
-				nce, R										
	Actions	ULS	SL		SLS2									
	Wind	500	25		N/A									
	Snow	150	25	5	N/A									

Des	sign V	Vind	Spe	eds											
					oeeds usi	ng NZ	51170.2								
1	and the second	42	1	and al		Contraction of the second							1		
Fint		~ ~ ~						0				_	8	A MARCE	
						Ricquelle	résonpling and Care	ael Works	-	and the					
		a suc		SC	187	ante let			186	50		The second		and the second	
					AL-SHE	Watthe		0						A	
-				A STATE		IST SIELE	Highway-26 ¹ 189	1 Barry						and the second	
						Q									200
							8	-		M	Ingaonua E	ream		and the second s	a los
2.2					112	the second	acrua S ₁			-					
				9	a la tra		Mangs		- Kar	Star 1			G	oogl	e Eart
1985 Graph:	Min. Avg. Max E Range Totals: D	levation: 39, 3 listance: 232 i	39, 40 m m Elev Ga	ain/Loss: 2.48 m1.61	m Max Slope: 23.8%.	20.8% Avg Slo	xe: 1.1%6.7%						5°19'54.27" E	elev 39 m	
10 m 39 m										39 m					\searrow
											-				
		25 m		50 m	75 m	10	m	125 m	1	(50 m 163	m 175 m	1	200 m		232 m
Crit	ical di	^{25 m} recti	onal	wind	75 m	=	W	125 m est		50 m 163	m 175 m		200 m		232 m
Crit		recti	onal	wind	75 m	=	W A7	est		50 m 163	m 175 m		200 m		232 m
Reg				wind	75 m	_				50 m 163	6 175 m		200 m		232 m
Reg Ref	gion	e hei	ight	wind	75 m	=	A7 6.8			50 m 183	175 m		200 m		232 m
Reg Ref Ter	ion erenc	e hei atego	ight	wind	75 m 75 m 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1	=	A7 6.8	m		50 m 183	* 175 m		200 m		232 m
Reg Ref Ter Lee	gion erenc rain ca Zone	e hei atego	ight	som wind	75 m 75 m	=	A7 6.8 Cate	m		50 m (13 (13 (13 (13 (13)	2 m 175 m		230 m		
Reg Ref Ter Lee Hei	ion erenc rain ca Zone ght of	e hei atego hill	ight pry			=	A7 6.8 Cate No	m gory 2 m			•• 175 m •• •• •• •• •• •• •• •• •• ••		200 m		232 m
Reg Ref Ter Lee Hei Hor	gion erenc rain ca Zone ght of iz. Dis	e hei atego hill tanc	ight pry e to H	1/2	H	= = = = = =	A7 6.8 Cate No 0 200	m gory 2 m m			2 175 m 175 m		200 m		232 m 232 m 232 m 233 m 23
Reg Ref Ter Lee Hei Hor	gion erenc rain ca Zone ght of iz. Dis	e hei atego hill tanc	ight pry e to H		H		A7 6.8 Cate No 0	m gory 2 m m					200 m		232 m 232 m 232 m 233 m 23
Reg Ref Ter Lee Hei Hor Hor	tion erenc rain ca Zone ght of iz. Dis iz. Dis	e hei atego hill stanco	ight pry e to H	1/2	H Lu x		A7 6.8 Cate No 0 200 200	m gory 2 m m m		som 13			200 m		232 m 232 m 244 244 244 244 244 244 244 24
Reg Ref Ter Lee Hei Hor Hor	gion erenc rain ca Zone ght of iz. Dis	e hei atego hill stanco	ight pry e to H	1/2	H Lu x ULS		A7 6.8 Cate No 0 200 200 45 m	gory 2 m m m m		som 10 10 10 10 10 10 10 10 10 10 10 10 10 1			200 m		232 m 232 m 241 241 241 241 241 241 241 241
Reg Ref Ter Lee Hei Hor Reg	ion erenc rain ca Zone ght of iz. Dis iz. Dis iz. Dis	e hei atego hill stanco tanco	ight ory e to H e cres	I/2	H Lu 2 X 3 ULS 5 LS		A7 6.8 Cate No 0 200 200 45 m 37 m	m gory 2 m m m n/s (sector)	tion 3, To				200 m		232 m 232 m 241 241 241 241 241 241 241 241
Reg Ref Ter Lee Hor Hor Reg Wir	ion erenc zone ght of iz. Dis iz. Dis jonal	e hei htego hill tanc tanc v,R	ight pry e to H e cres nal m	I/2 st to site	H Lu x ULS SLS r Md		A7 6.8 Cates 0 200 200 45 m 37 m 1.00	m gory 2 m m m n/s (sector)	tion 3, To	able 3.1)			200 m		232 m 232 m 241 241 241 241 241 241 241 241
Reg Ref Ter Lee Hei Hor Reg Wir Ter	ion erenc rain ca Zone ght of iz. Dis iz. Dis iz. Dis iz. dis riz.	e hei ategc i hill itanc itanc V,R ectio eigh	e to F e cres	1/2 st to site ultiplie tiplier	H H Lu X ULS ULS SLS Md Mz, zat		A7 6.8 Cate No 0 200 200 45 m 37 m 1.00 0.94	m gory 2 m m m m n/s (sect sect sect	tion 3, To tion 4, To tion4)				200 m		232 m 232 m 241 241 241 241 241 241 241 241
Reg Ref Ter Lee Hei Hor Reg Wir Ter Shie	gion erenc rain ca Zone ght of riz. Dis riz. Dis gional gional nd dire rain/h elding	e hei ategc i hill tanc tanc V,R ectio eigh	e to F e cres nal m t mul	I/2 st to site ultiplie tiplier r	H H Lu Lu ULS SLS SLS Md Mz,cat Ms		A7 6.8 Cate 0 200 200 45 m 37 m 1.00 0.94 1.00	gory 2 m m m m m n/s (sect) (sect) (sect	tion 3, To tion 4, To tion 4)				200 m		232 m 232 m 241 241 241 241 241 241 241 241
Reg Ref Ter Lee Hei Hor Reg Wir Ter Shie	ion erenc rain ca Zone ght of iz. Dis iz. Dis iz. Dis iz. dis riz.	e hei ategc i hill tanc tanc V,R ectio eigh	e to F e cres nal m t mul	I/2 st to site ultiplie tiplier r	H H Lu X ULS ULS SLS Md Mz, zat		A7 6.8 Cate No 0 200 200 45 m 37 m 1.00 0.94	gory 2 m m m m m n/s (sect) (sect) (sect	tion 3, To tion 4, To tion4)				200 m		232 m 232 m 244 245 245 245 245 245 245 245
Reg Ref Ter Lee Hei Hor Reg Wir Ter Shid	gion erenc rain ca Zone ght of riz. Dis riz. Dis gional gional nd dire rain/h elding	e hei atego i hill ttanc ttanc V,R ectio eigh ; mul hic n	e to F e cres nal m t mul tiplie	I/2 st to site ultiplie tiplier r blier	H H Lu Lu VLS SLS SLS Mz, cat Ms, cat Ms Ms		A7 6.8 Cate 0 200 200 45 m 37 m 1.00 0.94 1.00	m gory 2 m m m m n/s (sect) (sect) (sect) (sect) (sect	tion 3, Ta tion 4, Ta tion4) tion4)				200 m		232 m 232 m </td
Reg Ref Ter Lee Hei Hor Reg Wir Ter Shid	gion erenc rain ca Zone ght of riz. Dis riz. Dis gional gional nd dire rain/h elding	e hei atego i hill ttanc ttanc V,R ectio eigh ; mul hic n	e to F e cres nal m t mul tiplie	I/2 st to site ultiplie tiplier r blier	H H Lu Lu ULS SLS SLS Md Mz,cat Ms		A7 6.8 Cates N0 200 200 45 m 37 m 1.00 0.94 1.00 1.00	m gory 2 m m m m n/s (sect) (sect) (sect) (sect) (sect	tion 3, To tion 4, To tion4) tion4) tion4)				200 m		232 m 233 m 234 m </td

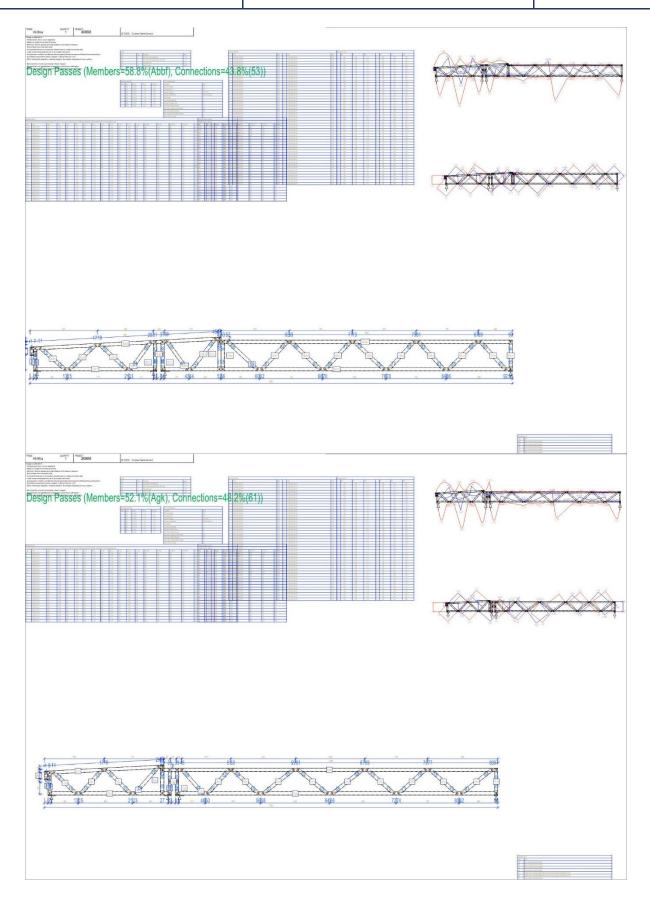
Ref. 210176


	Wind Pressure	Coerricien	ις.													
	Internal			Срі	=	0.0	or	-0.3								
	Windward wall			Сре		0.7	01	0.5		.5.2(a))					
	Leeward wall			Сре		-0.5			-	25.2(b)						
	Side wall			Сре		-0.7			-	25.2(C)						
	Up-wind, roof			Сре		-1.2		-0 5	(Table		/					
	Down-wind, roof	:		Сре		-1.2			(Table							
	Cross-wind, roof			Сре		-0.2			(Table					 		
				cpe	_	-0.2	01	0.2	(TUDIE	5.57						
	Along-wind, can	ору		Cp,n	=	-0.4	or	0.4	(Table	2 D4)						
	Across-wind, can			Cp,n		-1.5	or	0.2	(Table	2 D8)						
	Design Wind Pr	essures:														
	Area reduction fa			Ка		1.0								 		
	External combina			Kc,e		1.0								 		
	Internal combina			Kc,i		1.0								 		
	Local pressure fa	ctor		Kİ	=	1.0										
	Critical Design W	ind Pressu	res:													
		ULS Vsit		Vsit	Ne	t Cp	ι	JLS,p	z	S	LS,p	z				
	Roof, up	42.408	34.8	8688	-1	.2			kPa			kPa				
	Roof, down	42.408	34.8	8688	0	.5	0.	54	kPa	0.3	36	kPa				
	Wall (absolute)	42.408	34.8	8688	1	.0	1.	08	kPa	0.	73	kPa				
	Canopy, up	42.408	34.8	8688	-1	.5	-1.	.62	kPa	-1.	09	kPa				
	Canopy, down	42.408	34.8	8688	0	.4	0.	43	kPa	0.2	29	kPa				
Sno	ow Loads															
	Snow Region					=		N	1							
	Site Elevation				h ₀	=		4	0		m					
	Alpine / Sub-Alp	ine / No Sn	ow			=		No S	now							
	Exposure Catego	ry				=	S	Sub-A	Ipine	9						
	Roof angle				α	=		3	degr	ees						
	Snow load on the	e roof			S	=	0.	00	kPa							
							1	-					-	 	n Sut	

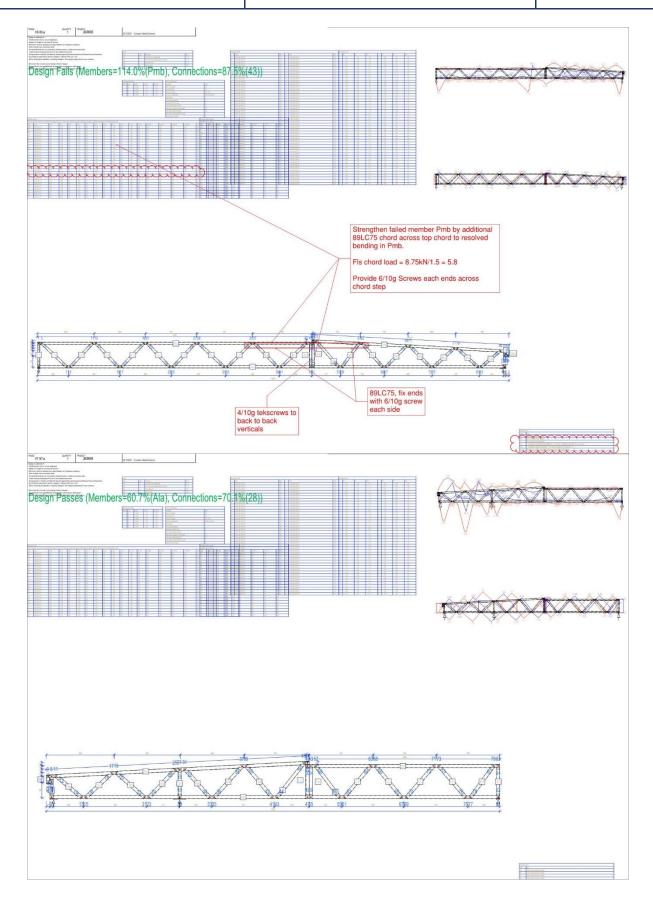
501	smic	200																		
	Pri	mary Syst	v Late :em:	ral	8	steel gned				ling i	s stak	oiliz€	ed by	Gib \	Nall E	Braci	ng sy	stem	I	
	Site	Subs	oil C	lass:	Cla	iss D-	Dee	o or s	soft s	soil si	tes									
	Spe	cific [Desig	n Bra	acing	Elen	nents	:												
			SED	Elem	ents															
		Peri	od =	0.	40	sec				Ch(1	r) =	3	00				(Table	23.1)		
		N(T,	D) =	1.	00					Z =		0	16	Ham	ilton		(Table	3.3)		
		Ultir	nate	limit	t Stat	e:			Serv	/iceal	bility	limi	t Sta	te						
		Duct	tility,	u =	1.	25				tility,			00							
		Ru =	:		1.	00			Rs =	:		0	25							
		Sp =			0.9	925			Sp =			C).7							
		kμ =			1.	14			kμ =	-		1	14							
		hen	re		С(Т)	= Ch	(T) 7	R N(נ ח ד) :		0.	48								
	_					Cd(T			-		0.		(5.2.	1.1)						
					SLS (Cd(T1	L) =				0.	07	(5.2.)	1.2)						



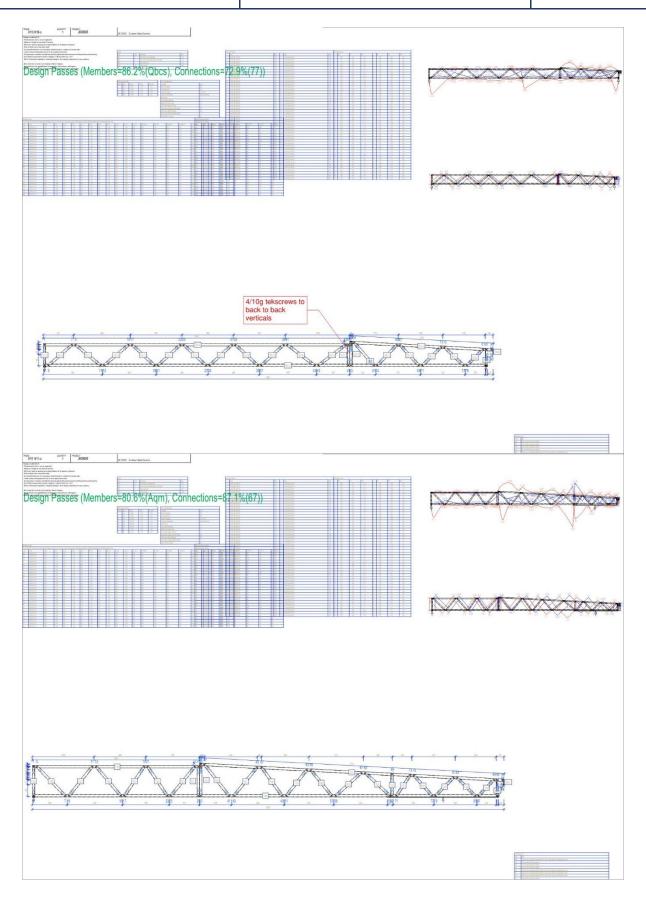
S4.0 Roof Framing

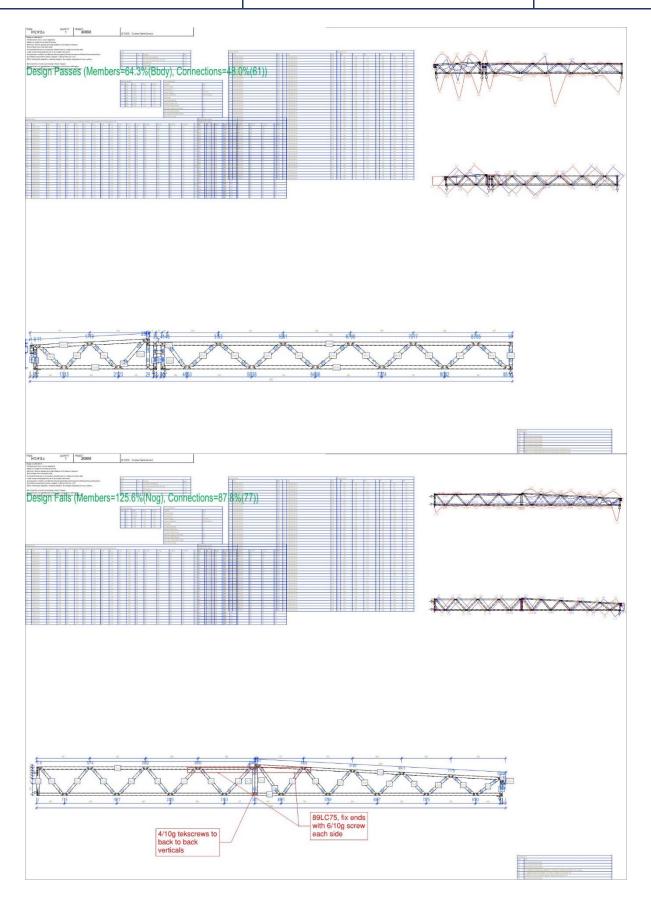


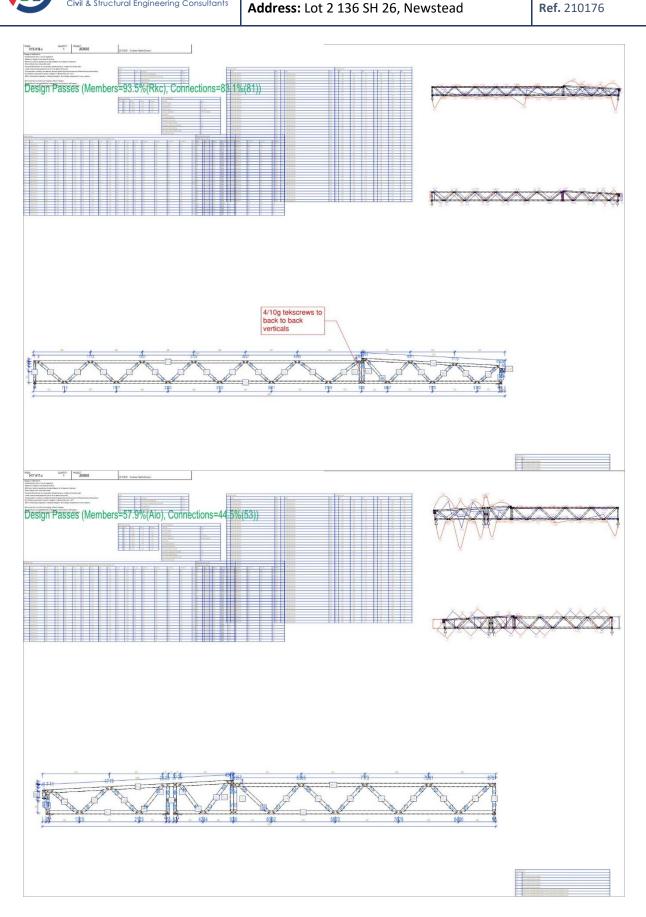
Ref. 210176

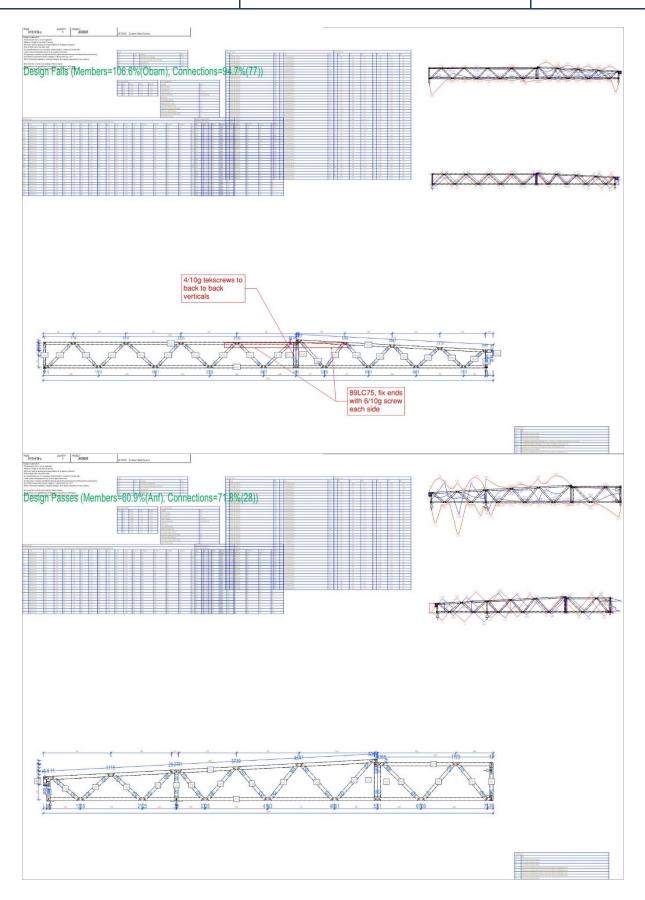


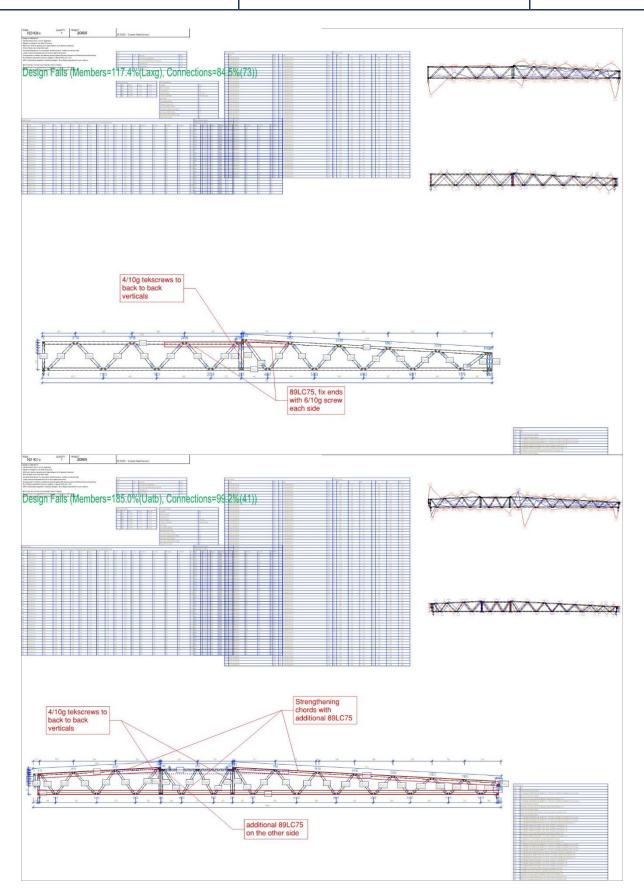
Ref. 210176

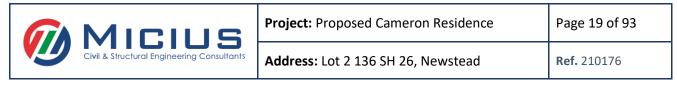


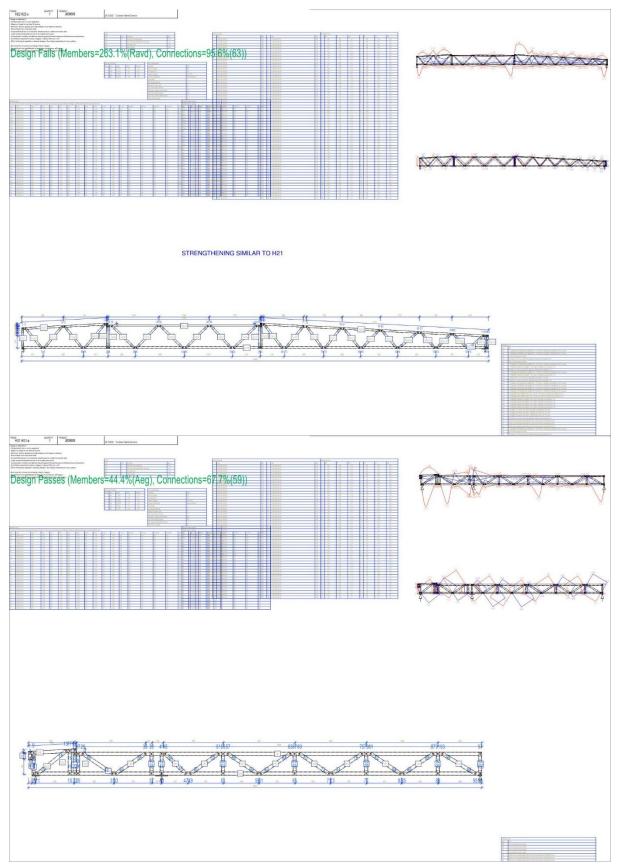

Th	MICIUS
	Civil & Structural Engineering Consultants

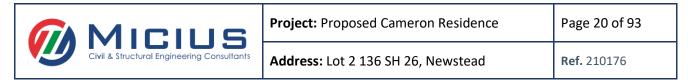



Th	M			
	Civil & Struc	tural Engine	ering Consultants	S

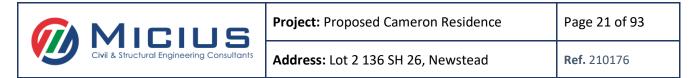

Th	M			
	Civil & Struc	tural Engine	ering Consultants	S

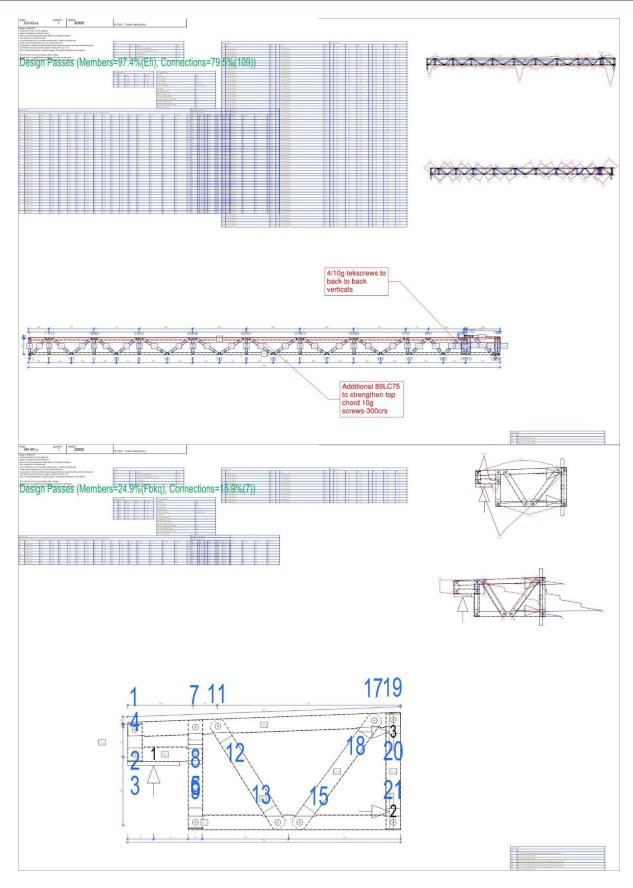


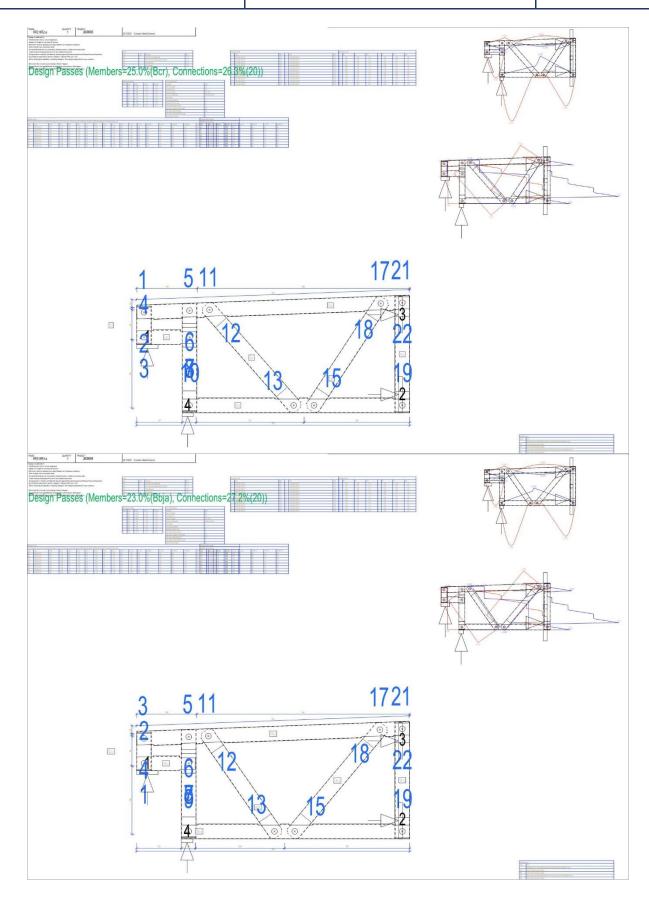


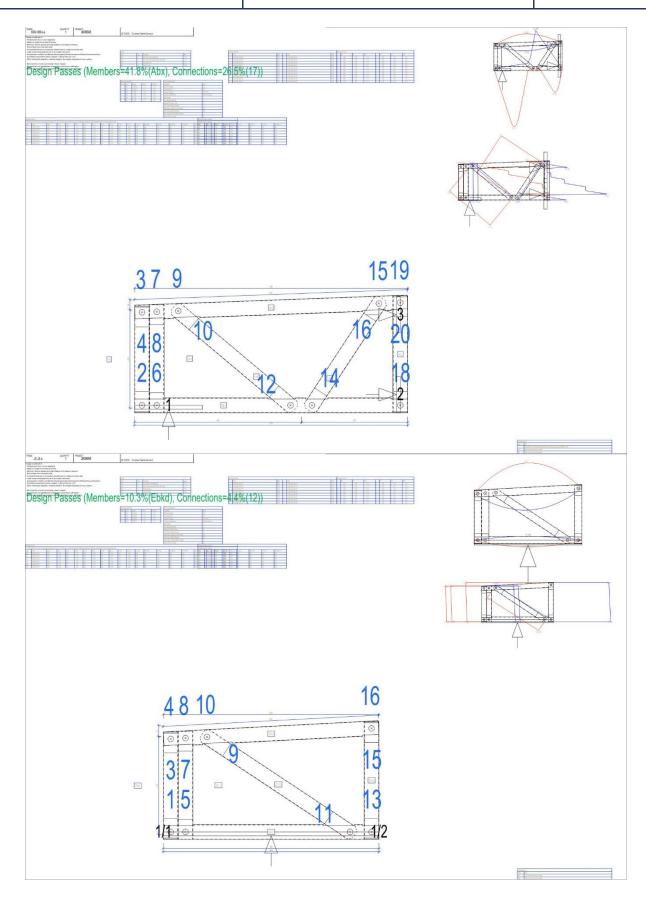


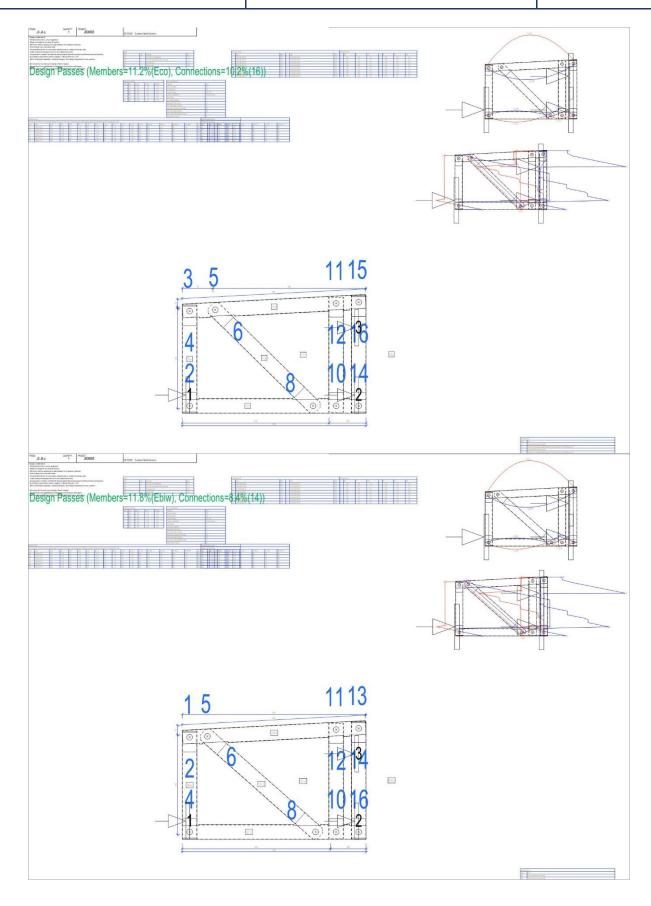


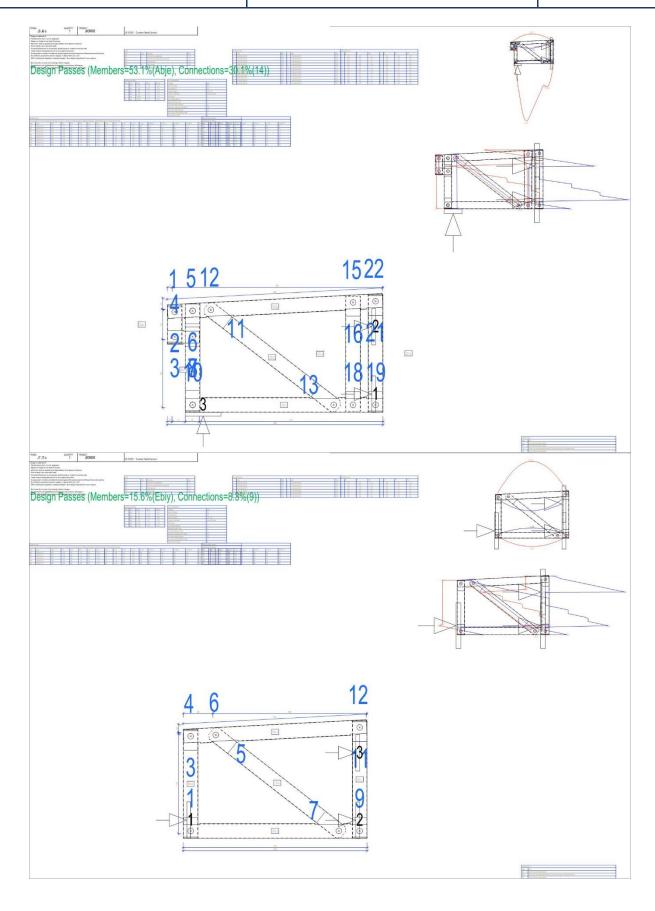


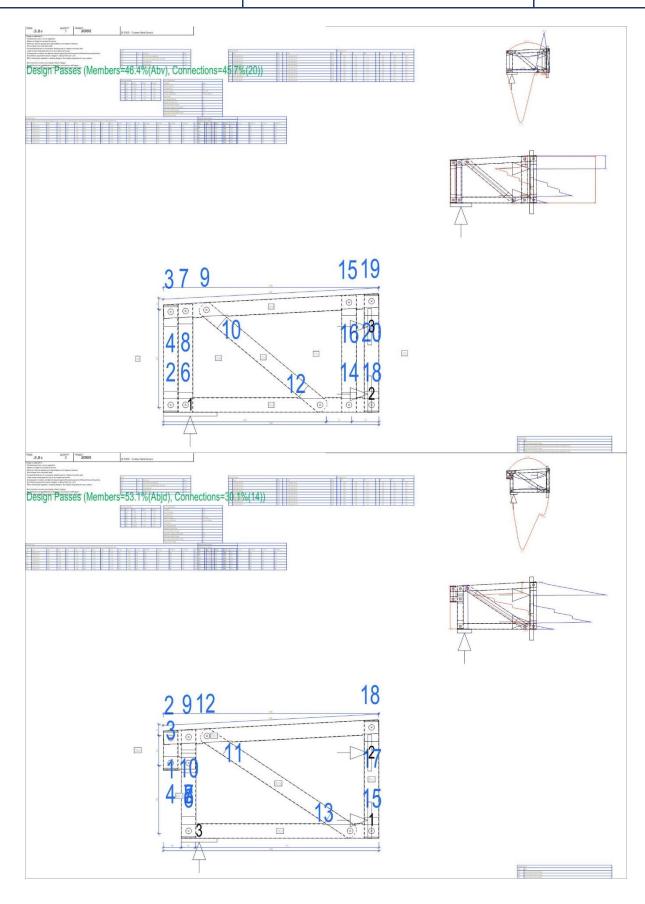


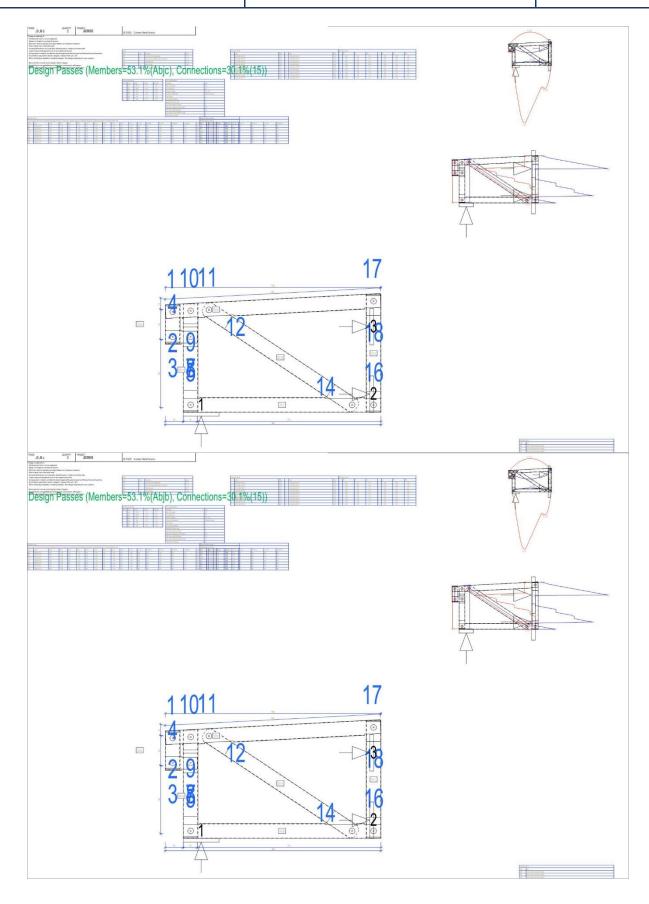


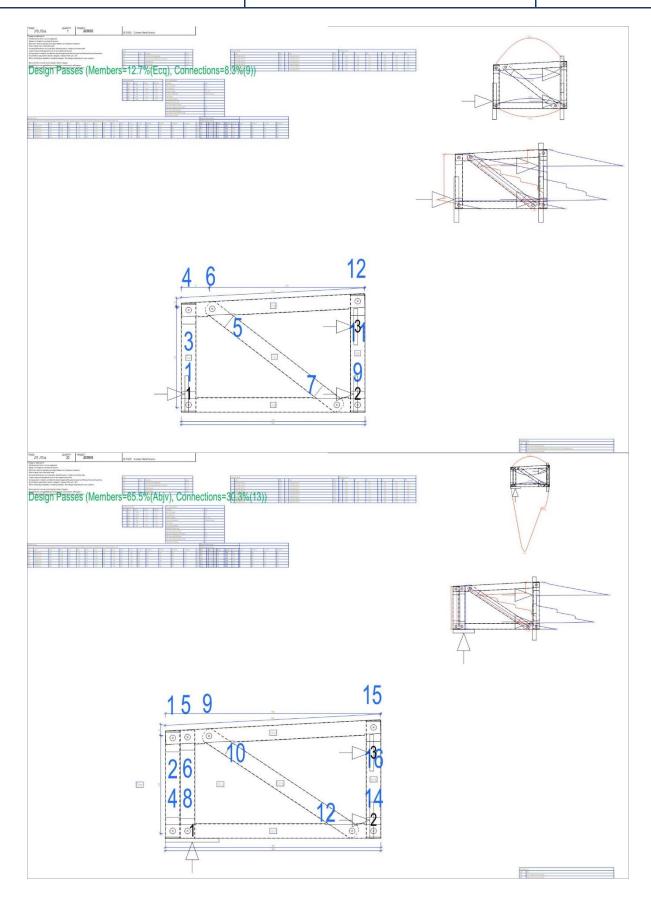


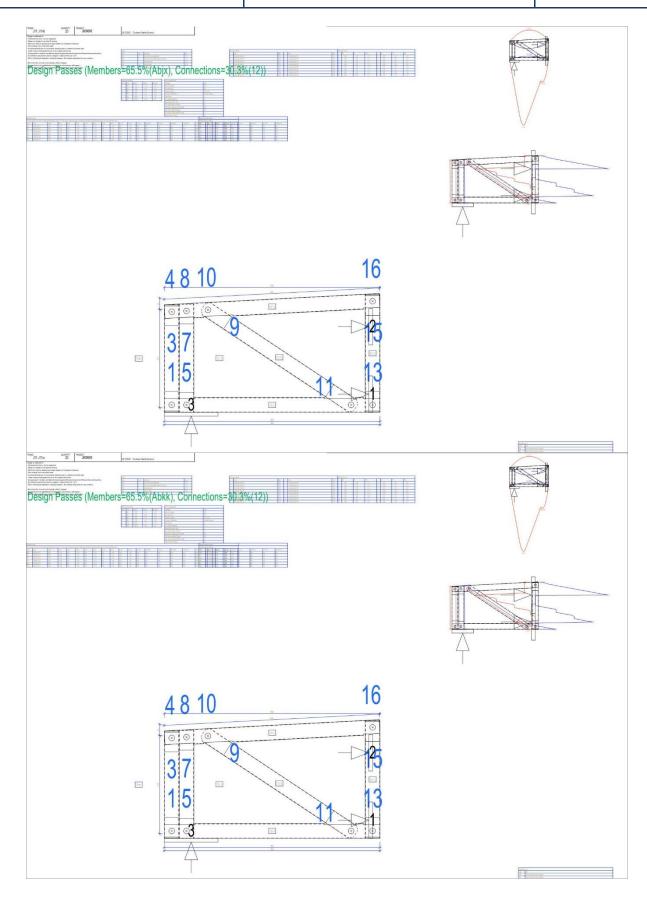


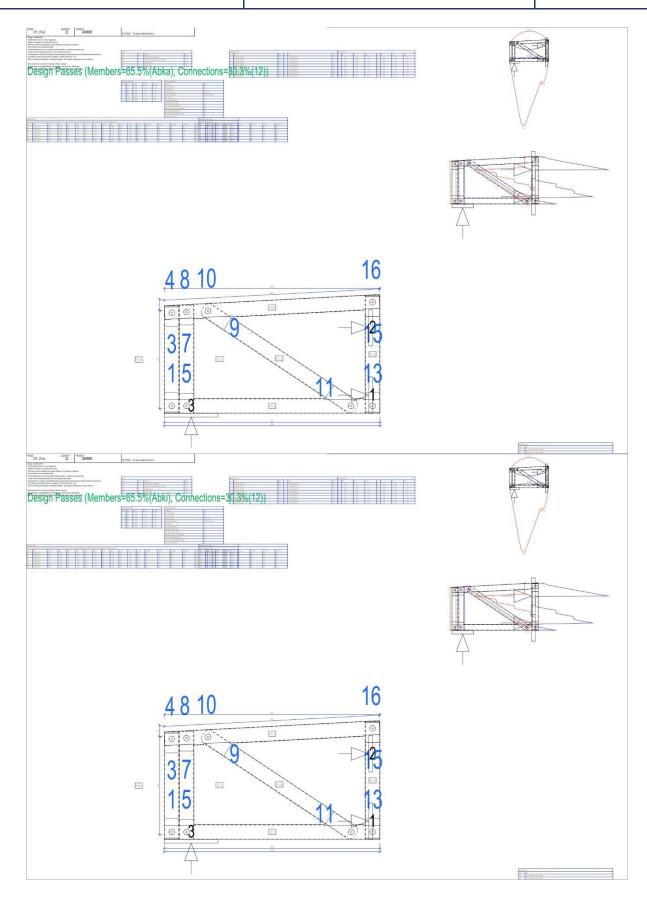


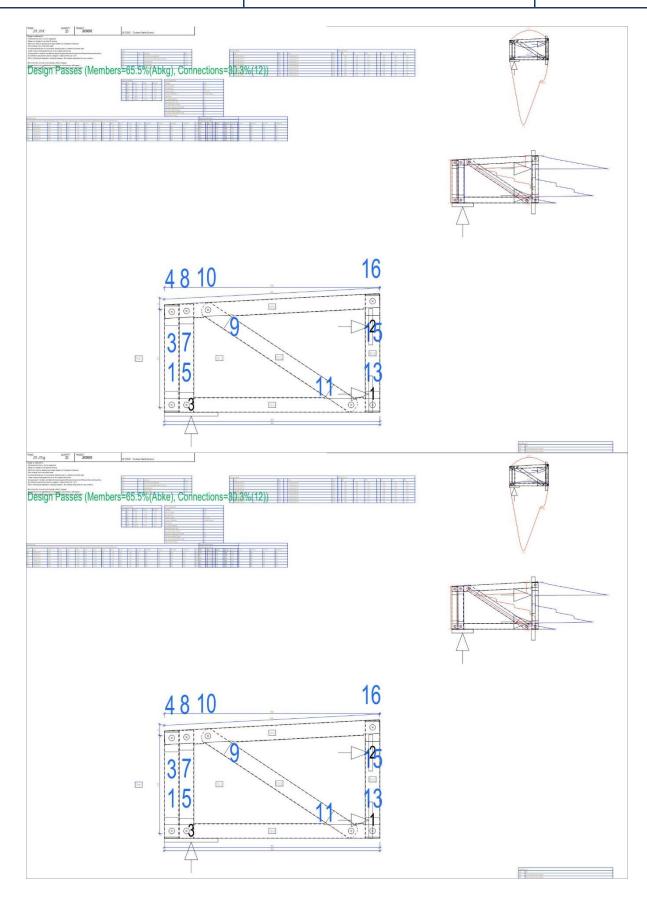


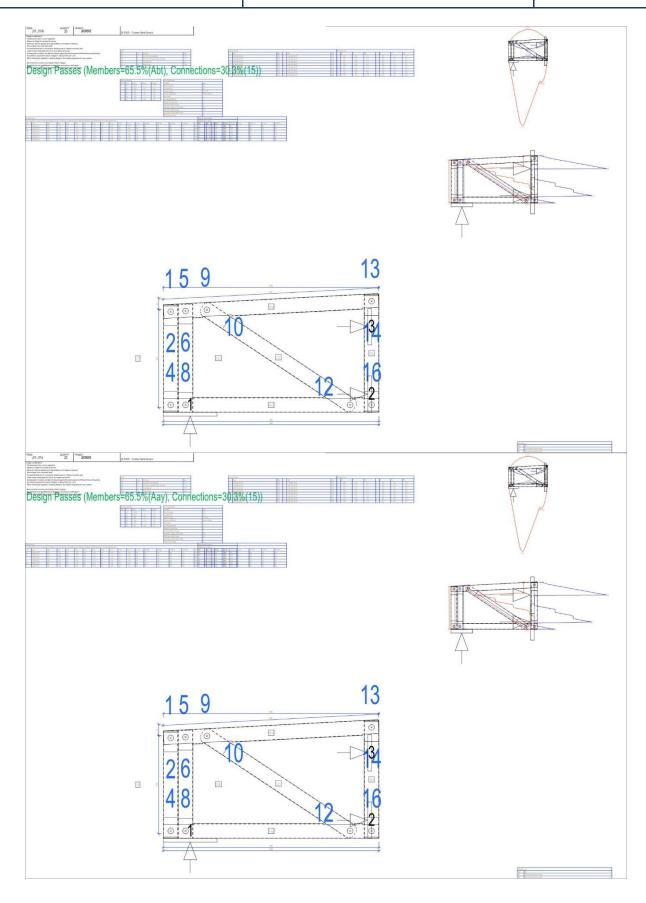


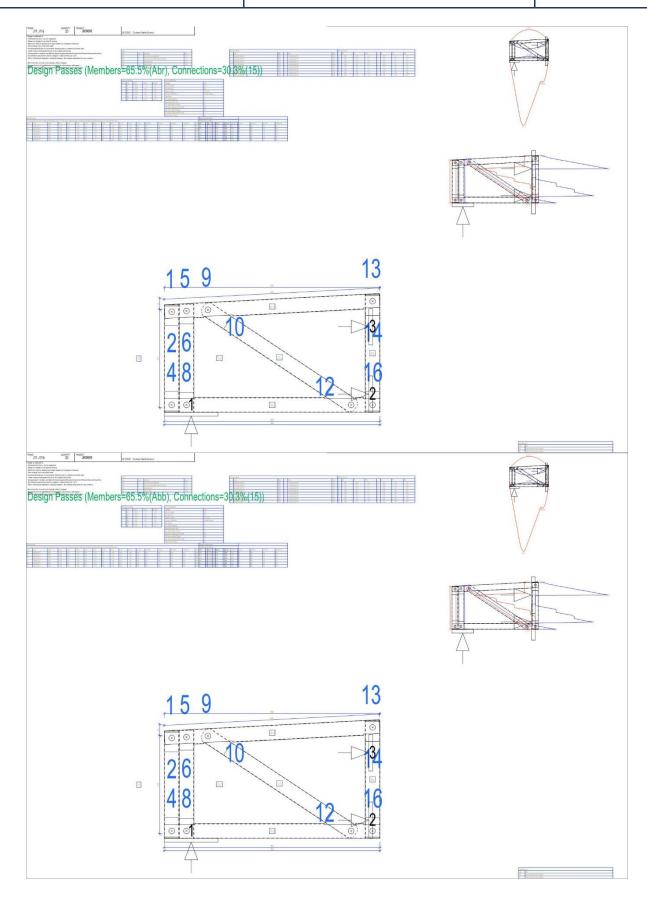


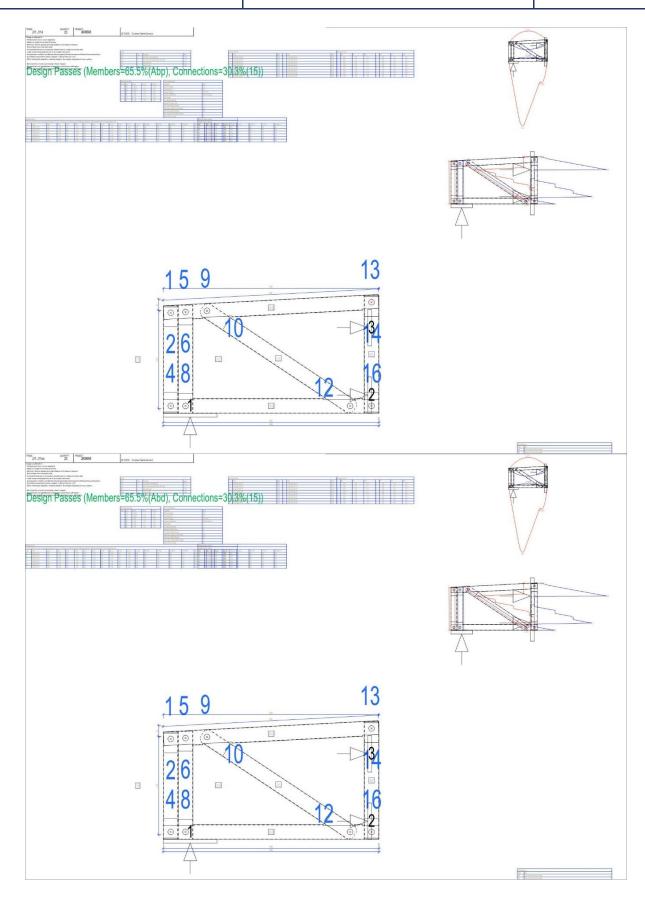


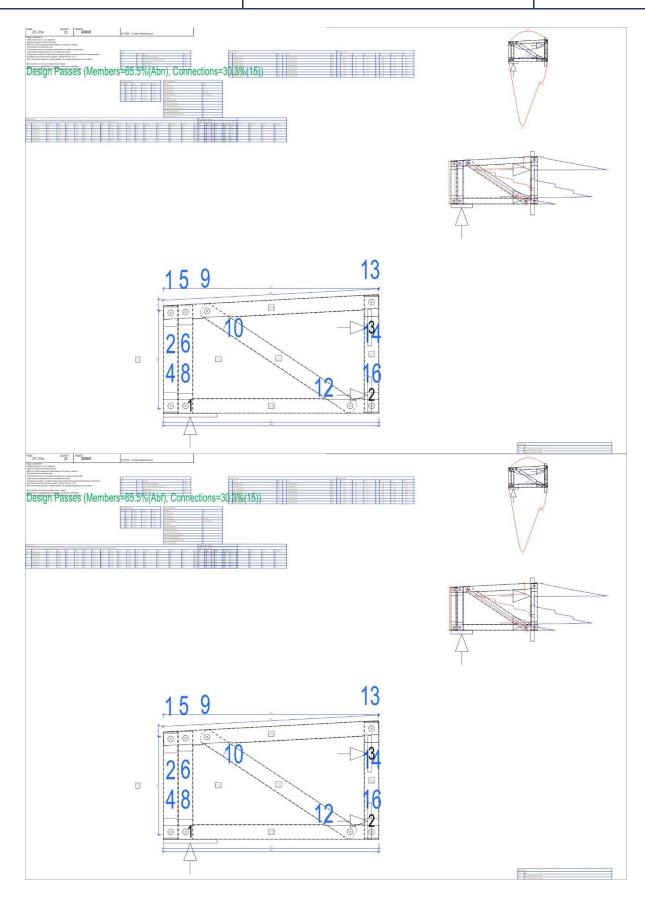


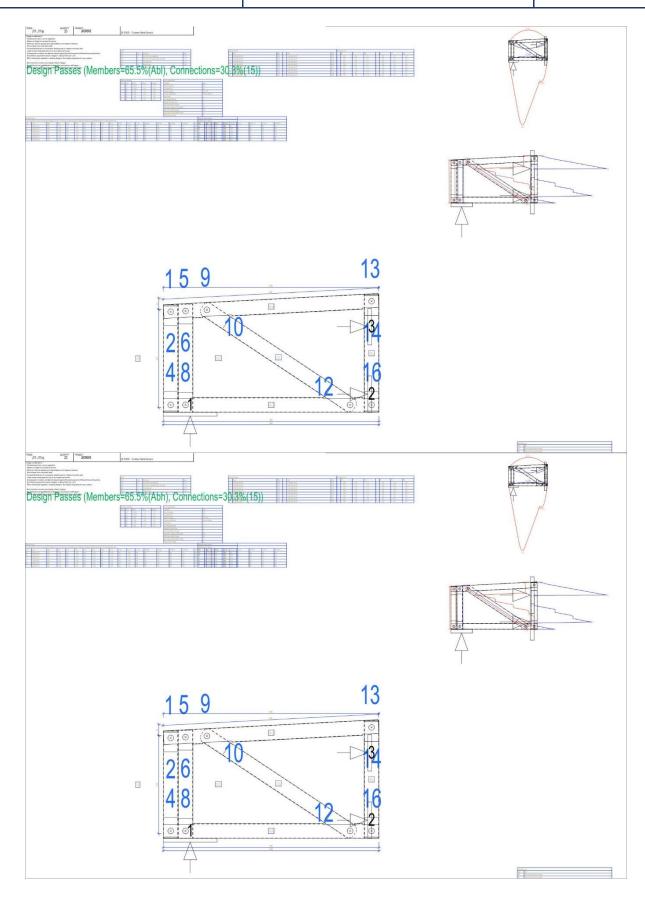


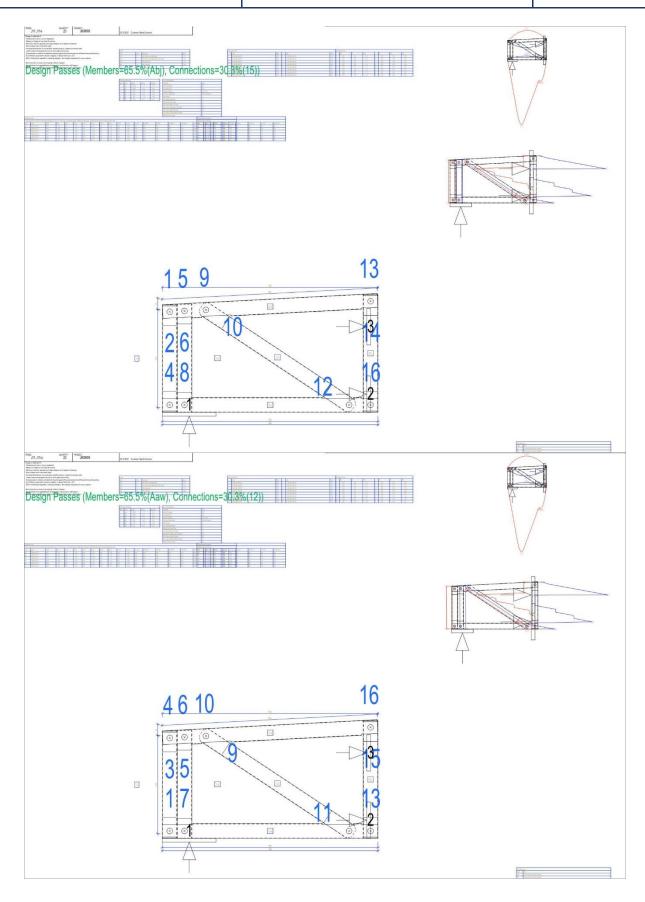


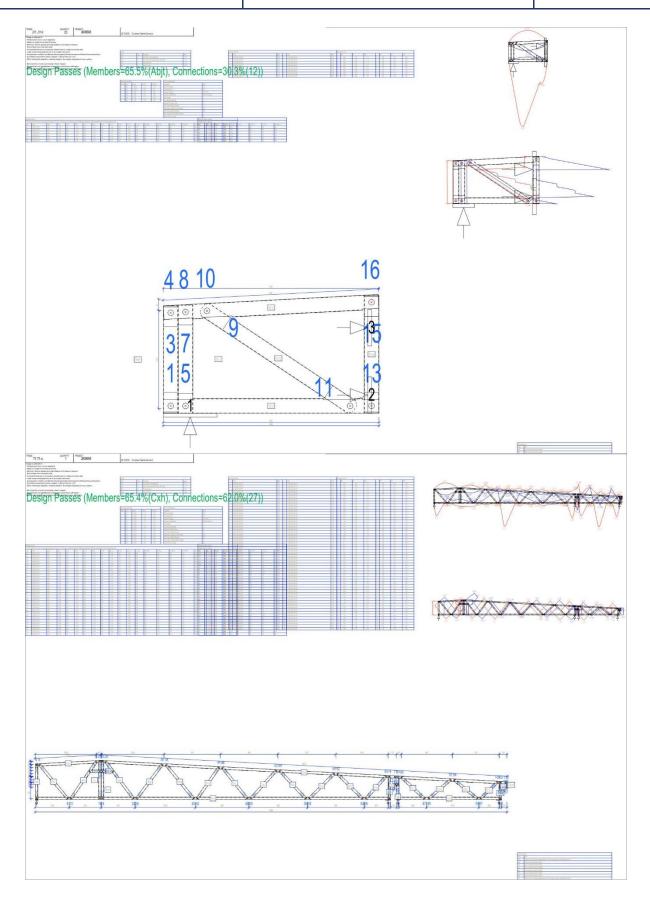


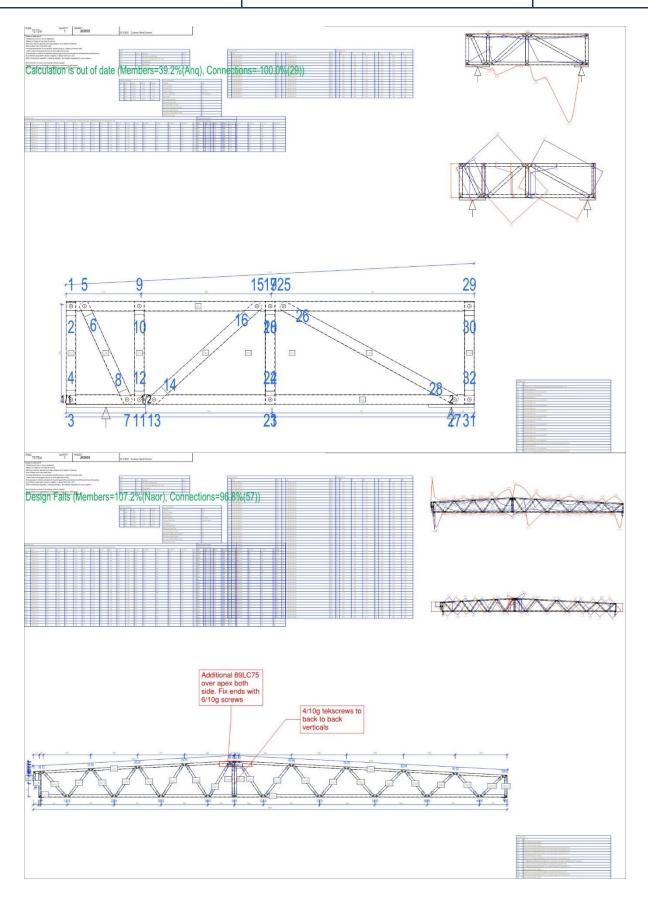


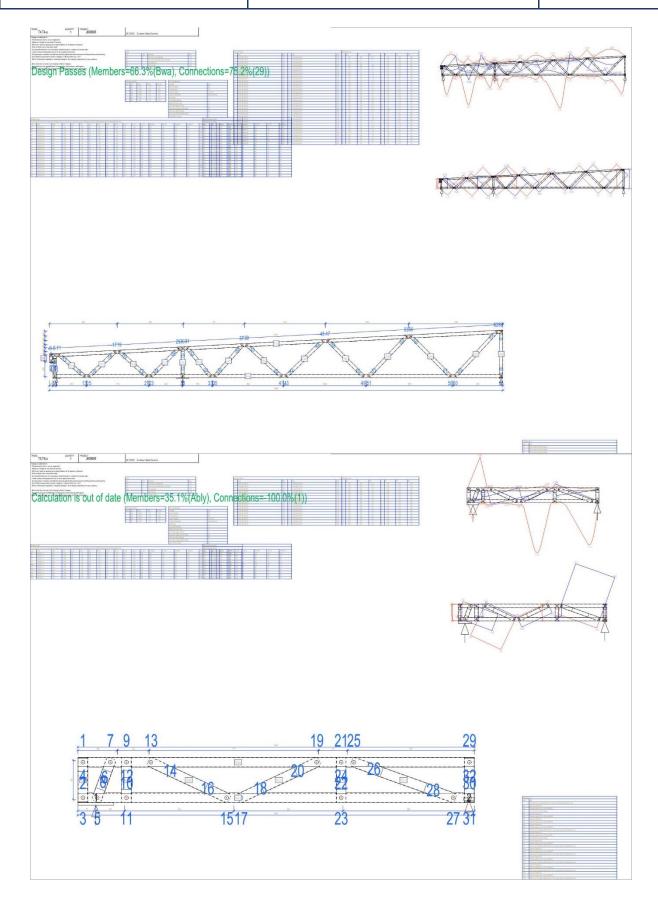


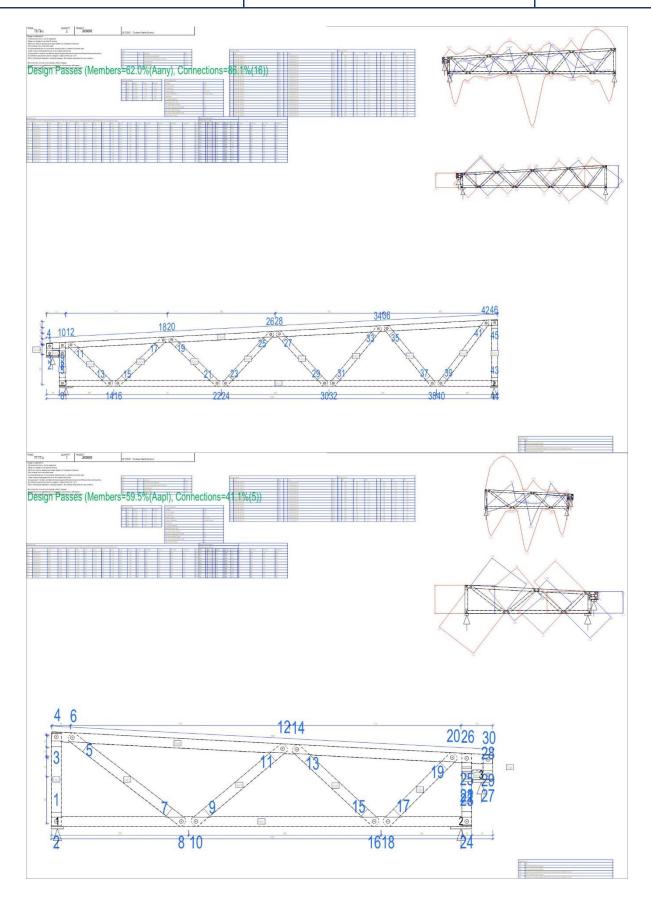


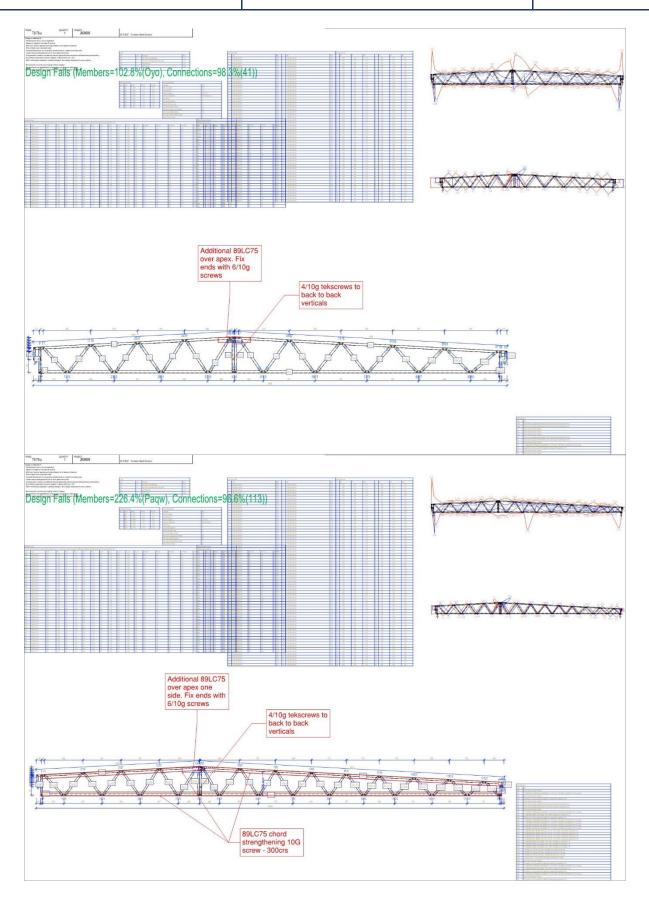


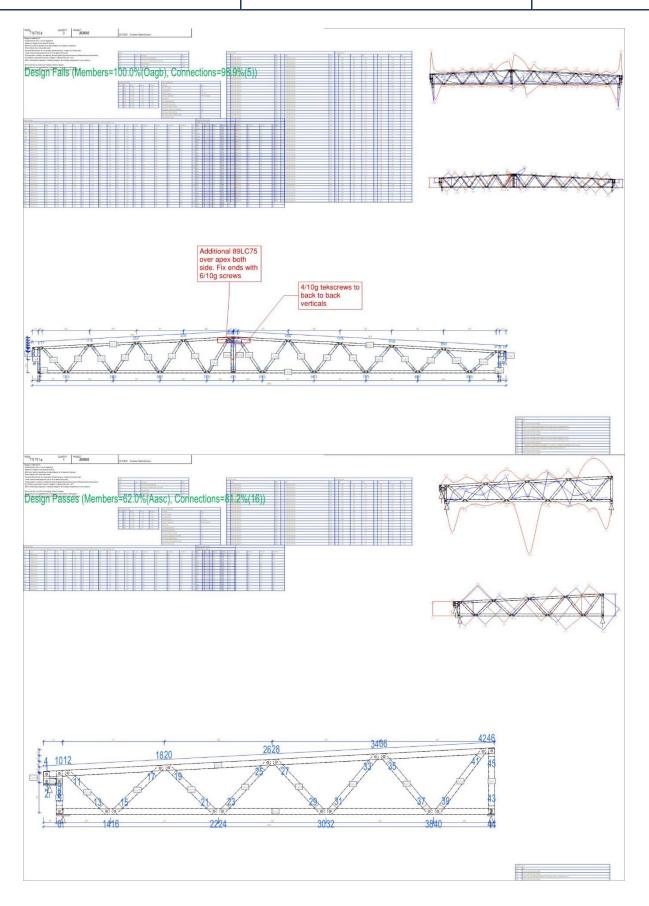


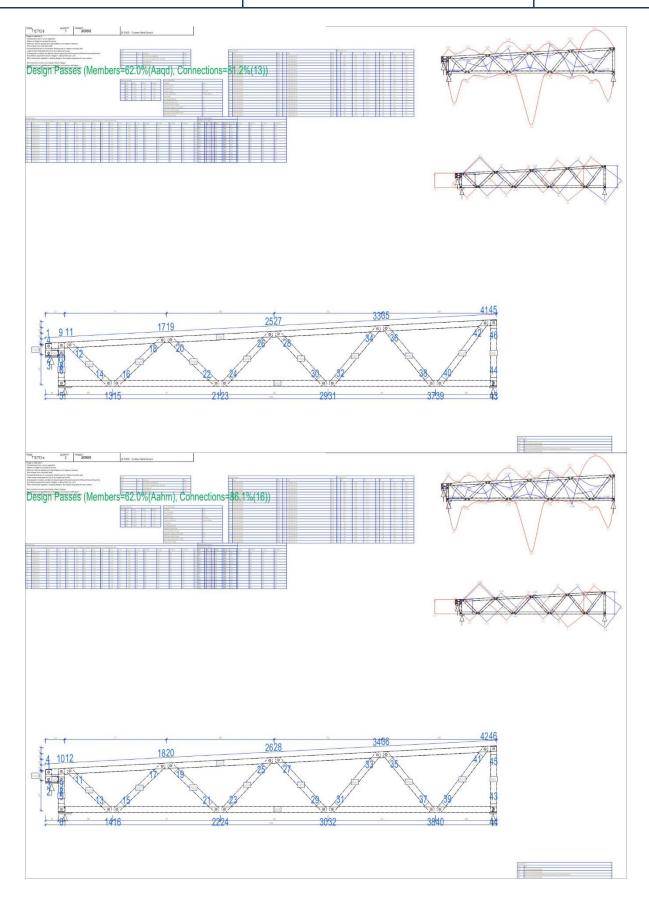


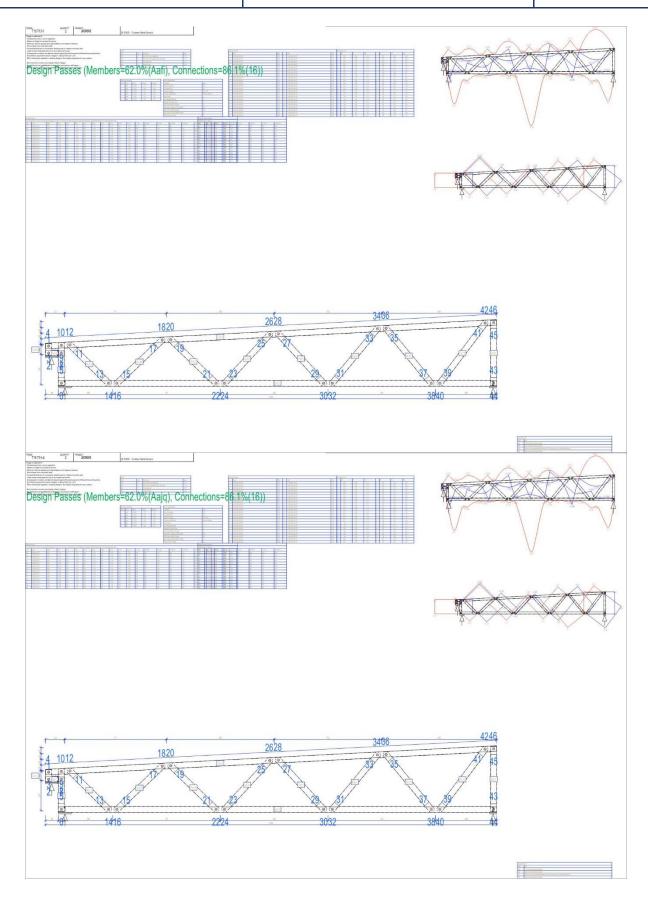


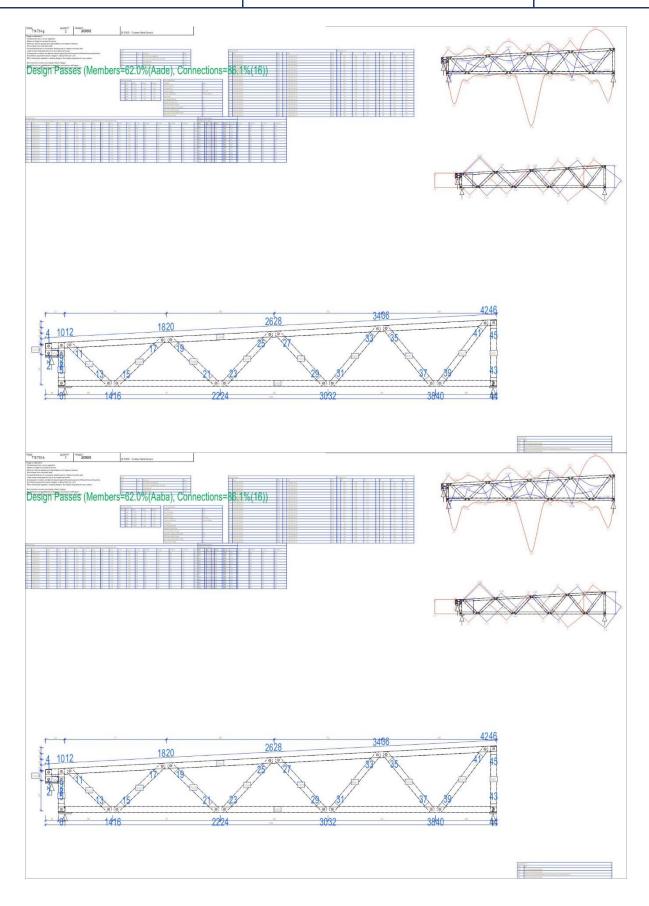


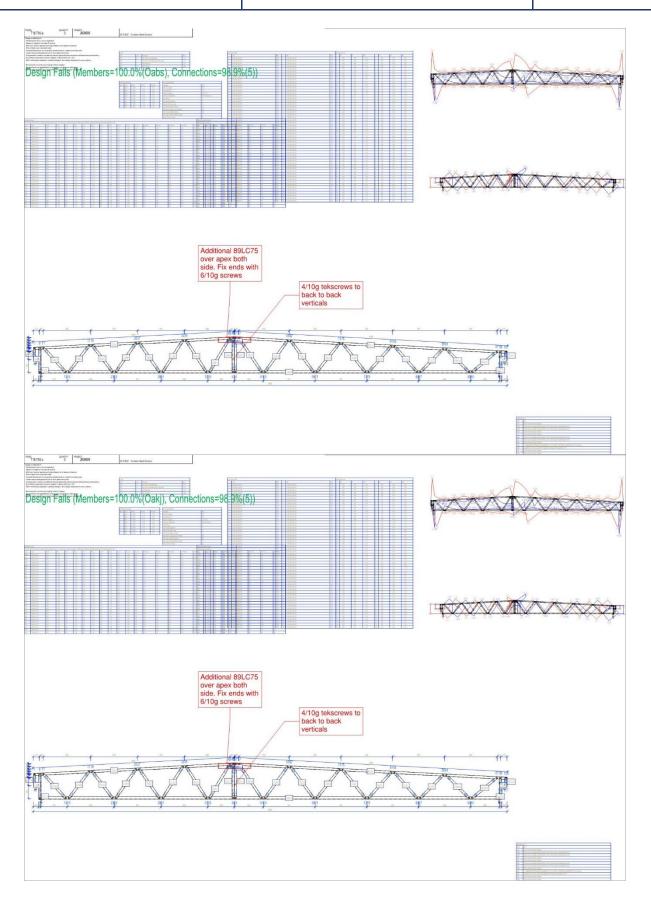


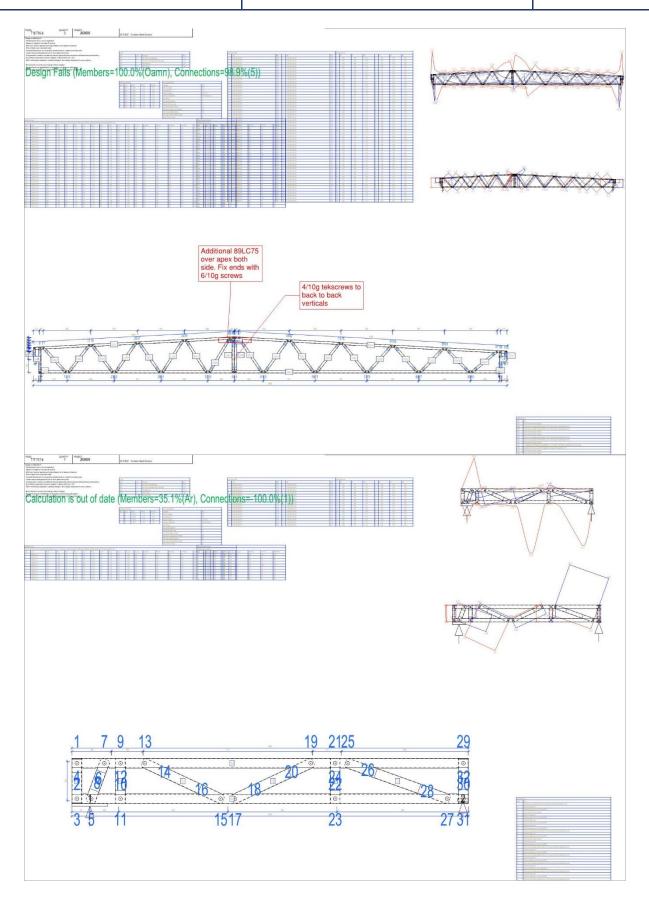


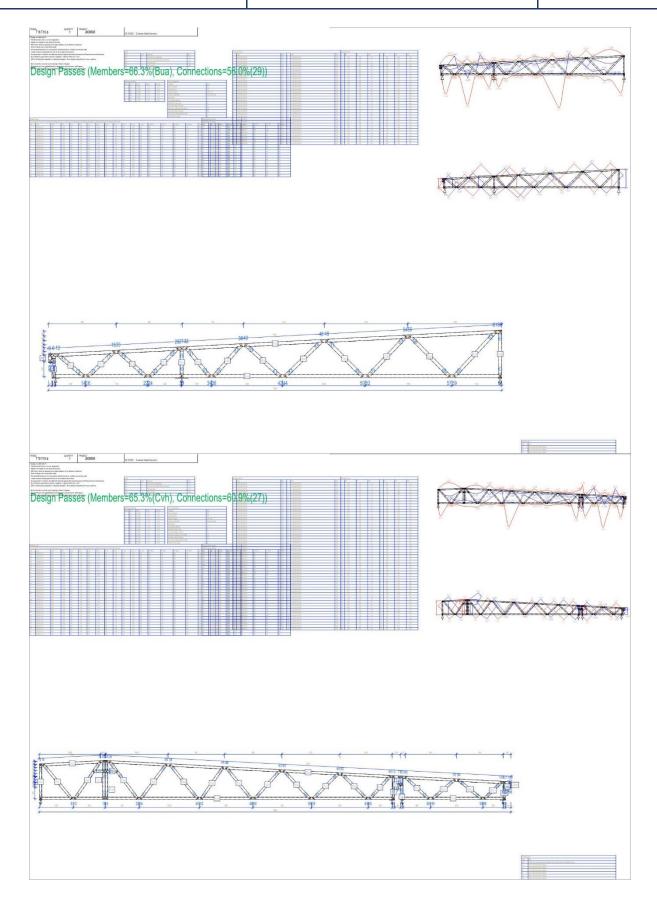


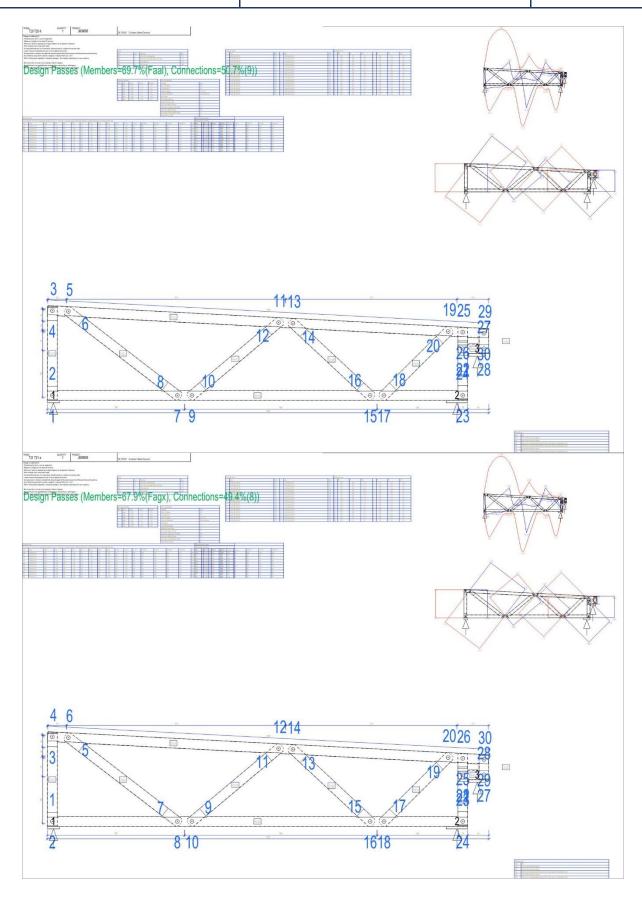


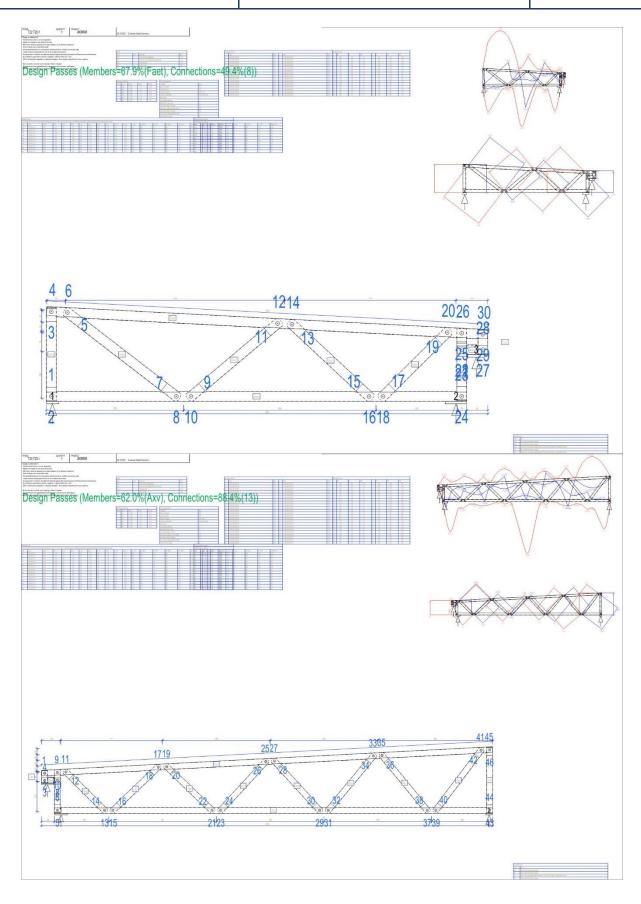


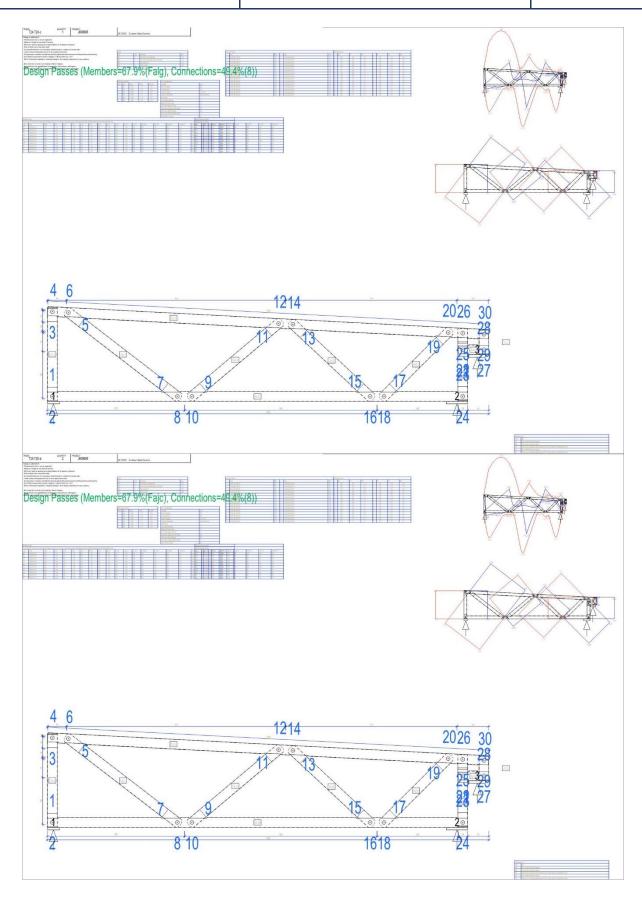


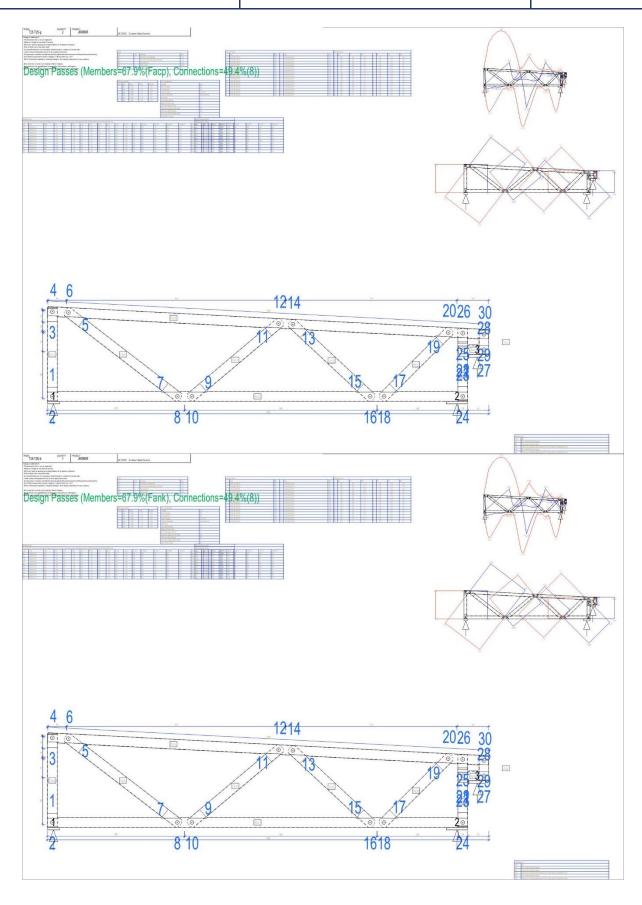


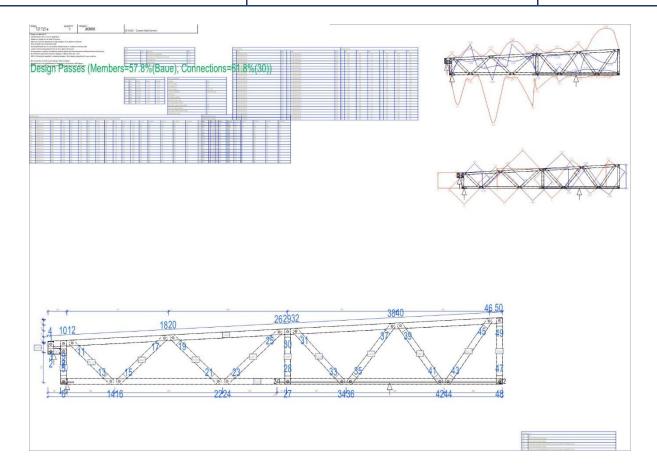












Bea	m Lal	bel:		RB1			Loca	tion:		C	Dinni	ng St	acke	r			Ben	ding		C	К	
Spar	י (L):			8.1m			Sect	ion:			380	PFC	55.2				She	-		C	К	
							Fire	Rate	d:			N/A	,				Def	ectio	n	C	К	
																	Limi	ited T	ſemp	N	Α	
								W	=	5.	7kN/	′m										
										8.1m				4								
		Max	23.	3kN	=R*										R* =	23.3	3kN	Max				
		Min	-23.	0kN												-23.	0kN	Min				
Loa	ding	s:	SW	=	0.	54	kN/ı	n			(Tr	ibut	ry Ar	ea)								
	R	oof T	ype .	A	[Dead	=	0.	27	kPa	х	5.9	9m	=		1.6	kN/	m				
						Live	=	0.	25	kPa	х	5.9	Эm	=		1.5	kN/	m				
					Wind	d, up	=	-1	.29	kPa	х	5.9	Эm	=		-7.6	kN/	m				
				Wii	nd, d	own	=	0.	54	kPa	х	5.9	Эm	=		3.2	kN/	m				
					S	now	=			kPa	х			=		0.0	kN/	m				
	۱	Nall 1	Гуре	В	[Dead	=			kPa	х			=		0.0	kN/	m	Live	e load	d facto)(
						Live	=			kPa	х			=		0.0	kN/	m	Ψ,c		0.4	1
	F	loor ⁻	Гуре	Α	[Dead	=			kPa	х			=		0.0	kN/	m	Ψ,Ι	=	0.4	1
						Live	=			kPa	х			=		0.0	kN/	m	Ψ,s	=	0.7	7
Loa	d Ca	ses:																				
	Ulti	mate	Limi	t Stat	e:		(v	v)				Serv	icea	bility	Limi	t Stat	e:	(v	v)			
	1.	1.2G	+ 1.5	5Q		=	4	.8	kN/I	m		6.	G + V	₽,I Q			=	2	.1	kN/ı	n	
	2.	_	+ W			=	-5	.7	kN/	n		7.	G + I	₽,s C	۱		=	3	.2	kN/ı	n	
	3.	1.2G	+Wu	,dw+	ΨcQ	=	5	.7	kN/	m		8.	Ws				=	5	.1	kN/ı	n	
	4.	1.2G	+Su+	ΨcQ		=	2	.6	kN/I	n		9.	1kN	Vibr	ation							
	5.	1.35	G			=	2	.9	kN/I	m												
Des	ign	Actio	ons:																			
	Case	es:					1		2	2.	Э	3.	2	1.	5	5.		Max			Min	
	Mor	nent,	, M*=	= W x	L^2/	=	39).2	-4	6.7	47	7.1	21	L.O	23	8.6	47	7.1kN	m	-4	6.7kNr	n
	She	ar, V*	' = W	x L/	2	=	19	9.3	-2	3.0	23	3.3	10).4	11	L.7	2	23.3kl	N	-2	23.0kN	1
Сар	acit	y:																				
	Rest	traint	Con	ditio	ns:		(LL)	Later	al-La	teral			Com	nmer	nts:							
	Load	d Hei	ght P	ositio	on:		SI	near	Cent	re			Rest	rain	s prov	video	l by f	loor	joist	s at		
	Seg	ment	Leng	gth	L =	0	.6	m					6000	crs								
	Ben	ding:	Ø٨	/lsx	=	23	8.4	kNm	ו			Shea	ar:	Ø	Vw	=	59	1.0	kN			
					=	33	4.5	kNm	۱			Caq	oacit	y Rat	io	=	0	0.0	ОК			
	Min	(ØM	sx, Ø	Mbx)	=	23	8.4	kNm	ו													
	-	pacit	y Rat	io	=	0	.2	ОК														_
Def	lect	ion:												G +	Ψ,Ι Q	=	4n	nm	=	Spa	an/205	5
	Bea	ms w	here	line-	of-s	ight i	s acro	oss se	offit,	acee	ss by	/ ope	rato	rs an	d ma	inten	Sp	ban/2	50	Y	OK	<
															Ws	=	9n	nm	=	Sp	an/86	52
		ings ۱		•													Sp	ban/2	200	Y	OK	<
	Lint	el Be	am (v	vertio	al sa	ig), <:	12mr	n									Sp	ban/2	40	Y	OK	<

	m Lak	bel:		RB2				tion:		K			tacke	er				ding			K
Spa	n (L):			8.1m			Sect				380		55.2				She	-			K
							Fire	Rate	d:			N/A	۱				Def	lectic	on	C	К
																	Lim	ited 1	Гетр	N	Α
								W	=	5.	2kN/	/m									
					4					8.1m					<u> </u>						
		Max	21.	2kN	=R*										R* =	21.	2kN	Max	٢		
		Min	-20.	5kN												-20.	5kN	Min			
Loa	ding	s:	SW	=	0.	54	kN/ı	m			(Ti	ribut	ry Ar	ea)							
	R	oof T	ype .	A	[Dead	=	0.	27	kPa	х	5.	3m	=		1.4	kN/	m			
						Live	=	0.	25	kPa	х	5.	3m	=		1.3	kN/	m			
					Wind	d, up	=	-1.	.29	kPa	х	5.	3m	=		-6.8	kN/	m			
				Wii	nd, d	own	=	0.	54	kPa	х	5.	3m	=		2.9	kN/	m			
					S	now	=			kPa	х			=			kN/				
	V	Vall 1	Гуре	В	[Dead	=			kPa	х			=			kN/		Live	e load	facto
						Live	=			kPa	х			=			kN/		Ψ,c	_	0.4
	Fl	oor ⁻	Гуре	Α	[Dead	=			kPa	х			=			kN/		Ψ,Ι		0.4
						Live	=			kPa	х			=		0.0	kN/	m	Ψ,s	=	0.7
Loa	d Ca	ses:																			
	_	nate	Limi	t Stat	e:		(\	v)				_	vicea	bility	Limi	t Sta	te:	(\	~)		
	100		i + 1.5			=	4	.4	kN/			6.		Ψ,Ι Q			=	2	.0	kN/ı	
				u,up		=	-5	5.1	kN/			7.	G +	Ψ,s Q			=	2	.9	kN/ı	
	-			,dw+		=		.2	kN/			8.	Ws				=	4	.6	kN/ı	n
	4.			-ΨcQ		=		.4	kN/			9.	1kN	Vibr	ation						
	5.	1.35				=	2	.7	kN/	m											
Des	sign /	Actio	ons:										_								
	Case	-					1	L.	1	2.	3	3.		4.	5	j.		Max	4		Min
				= W x		=	35	5.7		1.5	42	2.9	19	9.4	21	8	42	2.9kN	lm	-4	1.5kNı
			* = W	/x L/	2	=	17	7.6	-2	0.5	22	1.2	9	9.6	10).8	1	21.2k	N	-2	20.5kN
Cap	bacity	/:																			
	Rest	raint	Con	ditio	ns:					teral				nmer							
			-	ositio	on:		SI	hear	Cent	re			Res	trains	s prov	/idec	l by f	loor	joist	s at	
	-		Leng	-	L =		.6	m					600					_	1		
	Bend	ding:		Лsx			8.4	kNm					ar:			=		1.0			
				/lbx			4.5	kNm				Caq	pacit	y Rat	io	=	C).0	ОК		
				Mbx)) =		8.4	kNm	۱												
			y Rat	io	=	0	.2	ОК					-								
Def	flecti														₽,I Q			nm	=	Sp	an/222
	Bear	ns w	here	line	of-s	ght i	s acr	oss s	offit,	acee	ss by	у оре	erato	rs an				ban/2		Y	Ok
															Ws	=		nm	=	Sp	an/95
	_	-		plast														ban/2		Y	Ok
	Linte	el Be	am (v	vertio	cal sa	g), <	12mr	n									Sp	ban/2	240	Y	OK

	m Lak	bel:		RB3				tion:		ŀ			tacke	er				ding		C	Ж
Spa	n (L):			9.8m			Sect				250		35.5				She	-			Ж
							Fire	Rate	d:			N/A					Def	lectic	on	C	Ж
																	Lim	ited 1	Гетр	N	A
								W	=	-2.	7kN	/m									
										9.8m					<u> </u>						
		Max	10.	2kN	=R*										R* =	10.1	2kN	Max			
		Min	-13.	3kN												-13.	3kN	Min			
Loa	ding	s:	SW	=	0.	35	kN/ı	m			(Ti	ribut	ry Ar	ea)							
	R	oof T	ype .	A	[Dead	=	0.	27	kPa	х	2.	2m	=		0.6	kN/	m			
						Live	=	0.	25	kPa	х	2.	2m	=		0.6	kN/	m			
					Wind	d, up	=	-1.	.62	kPa	х	2.	2m	=		-3.6	kN/	m			
				Wii	nd, d	own	=	0.	43	kPa	х	2.	2m	=		0.9	kN/	m			
					S	now	=			kPa	х			=		0.0	kN/	m			
	۷	Vall 1	Гуре	В	[Dead	=			kPa	х			=		0.0	kN/	m	Live	e load	d facto
						Live	=			kPa	х			=			kN/		Ψ,c		0.4
	Fl	oor	Гуре	Α	[Dead	=			kPa	Х			=			kN/		Ψ,Ι	=	0.4
						Live	=			kPa	Х			=		0.0	kN/	m	Ψ,s	=	0.7
Loa	d Ca	ses:																			
	_	nate	Limi	t Stat	e:		(\	v)				_	vicea	bility	Limi	t Sta	te:	(\	N)		
	1.		i + 1.5			=	2	.0	kN/			6.		Ψ,Ι Q			=	0	.9	kN/ı	
	2.			u,up		=	-2	2.7	kN/			7.	G +	Ψ,s Q			=	1	.3	kN/ı	
	3.			,dw+		=		.1	kN/			8.	Ws				=	2	.4	kN/ı	n
	4.			-ΨcQ		=		.1	kN/			9.	1kN	Vibr	ation						
	5.	1.35				=	1	.3	kN/	m											
Des	sign /	Actio	ons:										_								
	Case						1	L.	2	2.	3	3.	4	4.	5	j.		Max			Min
				= W x		=	23	8.5	-3	2.6	24	1.9	1	3.6	15	5.3	24	4.9kN	lm	-3	2.6kNı
	Shea	ar, V	* = W	'x L/	2	=	9	.6	-1	3.3	1().2	5	5.5	6	.2	1	L0.2k	N	-:	13.3kN
Cap	bacity	/ :																			
	Rest	raint	Con	ditio	ns:		(LL)	Later	al-La	teral			Con	nmer	its:						
	Load	l Hei	ght P	ositio	on:		S	hear	Cent	re			Res	trains	s prov	/idec	l by f	loor	joist	s at	
	-		Leng	-	L=		.6	m					600								
	Ben	ding:		∕lsx			3.7	kNm	۱				ar:			=		1.0			
				/bx			8.3	kNm				Caq	pacit	y Rat	io	=	C	0.0	ОК		
				(Mbx) =	11	3.7	kNm	۱												
			y Rat	io	=	0	.3	ОК													
Def	flecti														₽,I Q			mm	=	Sp	an/78
	Bear	ms w	here	line	of-s	ght i	s acr	oss s	offit,	acee	ss by	y ope	erato	rs an				ban/2	250	Y	Ok
															Ws	=	-		=	Sp	an/30
	_	-		plast														ban/2		Y	OK
	Linte	el Be	am (v	vertio	cal sa	g), <	12mr	n									Sp	ban/2	240	N/A	N/4

	m Lal			RB4				tion		K		en Si		er.				ding		-	K
Spa	n (L):			9.8m			Sect				230	PFC					She	-			K
							Fire	Rate	d:			N/A	-					ectio			K
																	Lim	ited 1	Гетр	N	A
								W	=	-2.	0kN	/m									
						<u> </u>				9.8m											
		Max			=R*										R* =	7.4	kN	Max	(
		Min	-9.1	7kN												-9.7	7kN	Min			
Loa	ding	s:	SW	=	0.	25	kN/ı	n			ıT)	ribut	ry Ar	ea)							
	R	oof T	уре л	A	0	Dead	=	0.	27	kPa	х	1.	6m	=		0.4	kN/	m			
						Live	=	0.	25	kPa	х	1.	6m	=		0.4	kN/	m			
					Wind	d, up	=	-1	.62	kPa	х	1.	6m	=		-2.6	kN/	m			
				Wii	nd, d	own	=	0.	43	kPa	х	1.	6m	=		0.7	kN/	m			
					S	now	=			kPa	х			=		0.0	kN/	m			
	١	Vall 1	Гуре	В	0	Dead	=			kPa	х			=		0.0	kN/	m	Live	e loac	l facto
						Live	=			kPa	х			=			kN/		Ψ,c		0.4
	F	loor	Туре	A	0	Dead	=			kPa	Х			=		0.0	kN/	m	Ψ,Ι	=	0.4
						Live	=			kPa	х			=		0.0	kN/	m	Ψ,s	=	0.7
Loa	d Ca	ses:																			
		mate	Limi	t Stat	e:		(\	v)				Serv	vicea	bility	Limi	t Stat	te:	(\	N)		
	1.	1.2G	i + 1.5	5Q		=	1	.4	kN/	m		6.	G +	Ψ,Ι Q			=	0).7	kN/r	n
	2.	0.9G	i + W	u,up		=	-2	.0	kN/	m		7.	G +	Ψ,s Q			=	1	.0	kN/r	n
	3.	1.2G	i+Wu	,dw+	ΨcQ	=	1	.5	kN/	m		8.	Ws				=	1	.7	kN/r	n
	4.	1.2G	i+Su+	ΨcQ		=	0	.8	kN/	m		9.	1kN	Vibr	ation						
	5.	1.35	G			=	0	.9	kN/	m											
Des	sign	Actio	ons:																		
	Case	es:					1		2	2.	3	3.		4.	5	5 .		Max	(Min
	Mor	nent	, M*=	= W x	L^2/	=	17	7.0	-2	3.8	18	3.0	9	9.8	11	.0	18	3.0kN	lm	-23	3.8kNr
	She	ar, V*	* = W	x L/	2	=	6	.9	-9	9.7	7	.4	4	l.0	4	.5		7.4kN	N	-	9.7kN
Cap	bacity	y:																			
•	1	-	Con	ditio	ns:		(LL)	Later	al-La	iteral			Con	nmer	its:						
	Load	l Hei	ght P	ositio	on:			near					Res	trains	s prov	video	l by f	loor	joist	s at	
		nent	-		L =	0	.6	m			*****		600								
	Ben	ding:	ØN	Лsx	=	73	3.2	kNm	า			She	ar:	Ø	/w	=	23	2.5	kN		
				/lbx	=		0.4	kNm						y Rat		=		.0	ОК		
	Min	(ØM	sx, Ø	Mbx)) =	73	3.2	kNm	ı												
	Caq	pacit	y Rat	io	=	0	.3	ОК													
Def	flect	ion:												G + 4	₽,I Q	=	15	mm	=	Sp	an/64
			here	line-	-of-si	ght i	s acr	DSS S	offit.	acee	ss bv	, ope	erato	rs and	d mai	inten		ban/2	250	Y	ОК
									,						Ws				=		an/25
	Ceil	ingsv	with	plast	er fir	nish									-			ban/2	-	Y	OK
		-		•			12mr							-				ban/2		N/A	N/A

	am Lak In (L):			RB5 5.0m		Be		ation Secti					randa 15x1.			She	ding ar			ок Ок	
	(_,.		L										ed or				nbine	d		Ж	
	-													,	-	-	ectio			Ж	
										-											
					Γ										1						
								Тс	otal S	Span (L) =	5m			•						
	Max	2.7	7kN	=RA	*										RB*	=	2.7	7kN	Max	(
	Min	-4.	8kN														-4.8	8kN	Min		
Loa	ading	s:	sw	=	0.0)1kN/	/m														
		Rc	oof		C	Dead	=	0.	27	kPa	х	1.	4m]=		0.4	kN/ı	n			
						Live	=	0.	25	kPa	х	1.	4m	=		0.4	kN/ı	n			
					Wind	d, up	=	-1	.62	kPa	х	1.	4m	=		-2.3	kN/ı	n			
				Wii	nd, d	own	=	0.	43	kPa	x	1.	4m	=			kN/ı				
					S	now	=			kPa	х			=			kN/ı				
		W	'all		0	Dead	=			kPa	x			=			kN/ı		-	e loac	l fact
	_					Live	=			kPa	х			=			kN/ı		Ψ,c		0
	_	Flo	oor		0	Dead	=			kPa	Х			=			kN/ı		Ψ,Ι		0
						Live	=			kPa	Х			=		0.0	kN/ı	n	Ψ,s	=	0
Loa	ad Ca									_											
				t Stat	:e:			w)				-	1		' Limi	t Sta			w)		
			5 + 1.!			=		0	kN/			6.		Ψ,I Q			=		.4	kN/r	
	_			u,up		=		1.9	kN/			7.		Ψ <i>,</i> s C	2		=		.6	kN/r	
	3.			ı,dw+				1	kN/			8.	Ws				=	1	5	kN/r	n
	4.			ͱΨcQ		=).5	kN/			9.	1kN	Vibr	ation						
-	5.	1.35				=	U).5	kN/	m											
De	sign /		ons:																		
	Case	-	N 4*		1.42/			1.		2.		3.		1. 		5.		Max			Min
	_			= W x				8.1 . r		5.0		3.3	1	.5		.6		.3kN			.0kN
C	_		· = vv	/xL/:	2	=	2	2.5	-4	4.8	4	2.7	- 1	2	1	.3		2.7kľ	N	-	4.8ki
Cap	pacity																				
	Bend	-	1	0						-			-	N 4 -	4.	- 1	I.N.I.				
		Cb =	ł	0	1	2.1.1(2								Mo =	-	5.1 .7	kNm kNm			Appen	
		ey = ez =	1	00 00		е ј т. Ier eff. Ier	• •			bout y	-axes			/lol = 1od =		. <i>7</i> .7	kNm			2.2.3(4 2.2.4(4	
				00).9					ung										Vbd)		•)
	_	Ø _b =			1	e 7.2.2	.1						Ψ						vibaj		
		fy =	5	50	Мра					-				=).0	kNm				
	CI-										•		Ratio			.6)K			
	Shea		-	100	m			 						-	d she				tion '	<u>ר</u>	N
		a =		000	2	shear			ו 					-			F		tion		N
		d1 =		7.70		depth	of we	b		(M*	∕Øbľ	vis)^+	(V*/	ØvV۱	/)-	=	U.	21	N	/A	
	~	kv =	-	30	eq. D3																
D -	_	Vv =	4.	1.1	kN	U	K														
De	flecti								 					<u> </u>			-				14
	Limi			ftive			55		^6mr	n4				G+	Ψ,I Q	=		nm	=	-	an/14
	Root	me	mbei	rs (tru	isses	, raft	ers,	etc)							14/-	_	-	ban/3		Y	0
	Caili	000		plast	or f:	hich									Ws	=	-	nm ban/2	=	Sp Y	an/3
				TJCT	יות דור	iisn -		1	1						1		⊥ sr	1401/2	111	V Y	O

	ок К		-	Bend Shea	-		Verand x15x1.!				tion: Secti				RB6 3.6m			m Lab າ (L):	
_	K		bined				lembe								5.011		8		Spai
	K		ection		_		Tempe	igie iv											
	[/] K		ection	Den															
					1									Г					
					4		1	= 3.6m	an (L)	tal Sp	Tot			4					
		Max	1.2kN	=	RB*									*	=RA	kN	1.2	Max	
		Min	-2.2kN													2kN	-2.2	Min	
												/m	D1kN/	0.0	=	sw	s:	ding	Loa
			kN/m	0.2]=	0.9m	х (kPa	27	0.	=	Dead	C		of	Ro		
			kN/m	0.2]=	0.9m	х (kPa	25	0.	=	Live						
			kN/m	-1.5]=	0.9m	х (kPa	.62	-1	=	d, up	Wind					
			kN/m	0.4		=	0.9m	х (kPa	43	0.	=	own	nd, d	Wi				
			kN/m	0.0		=		х	kPa			=	now	S					
acto	load	Live	kN/m	0.0		=		х	kPa			=	Dead	0		all	W		
0.4	=	Ψ,c	kN/m	0.0		=		х	kPa			=	Live						
0.7	=	Ψ,Ι	kN/m	0.0]=		х	kPa			=	Dead	0		or	Flo		
0.7	=	Ψ,s	kN/m	0.0		=		x	kPa			=	Live						
																	ses:	d Cas	Loa
		N)	te: (v	t Stat	y Limi	bility	rviceal	Se			N)	(v		te:	t Stat	Limi	nate	Ultin	
	kN/n	.3	= 0.		۱	Ψ,Ι Q	G + V	6.	n	kN/ı	.6	0	=		5 Q	+ 1.5	1.2G	1.	
	kN/m	.4	= 0.		2	Ψ,s C	G + V	7.	n	kN/ı	.2	-1	=		u,up	+ W	0.9G	2.	
	kN/m	.0	= 1.				Ws	8.	n	kN/ı	.7	0	=	ΨcQ	ı,dw+	+Wu	1.2G		
				1	ration	Vibr	1kN	9.	n	kN/ı	.3	0	=		ŀΨcQ	+Su+	1.2G		
									n	kN/ı	.3	0	=			G	1.350	5.	
																ons:	Actic	sign A	Des
/lin			Max	5.	5	4.	4	3.	2.	2	ι.	1					s:	Case	
)kNn	-2.	m	1.1kNr	.6	0).5	0	1.1	.0	-2	.0	1	=	L^2/	= W x	M*=	nent,	Mom	
2kN	-2	J	1.2kN	.6	0).5	0	1.2	.2	-2	.2	1	=	2	/xL/	ʻ = W	ar, V*	Shea	
																	/:	acity	Сар
																	ding:	Benc	
x D)	Append	(D2.1	kNm	5.1	= 15	Mo =	[))	2.1.1(2	(eq D2	0	1	Cb =		
	2.2.3(4)	eq. 7.	kNm	.7	= 9	Vol =	N	es	bout y-a	ding a	or buck	ngth fo	eff. ler	mm	00	90	ey =	L	
	2.2.4(4)	eq. 7.	kNm	.7	= 9	/lod =	M			ting	or twis	ngth fo	eff. ler	mm	00	90	.ez =	L	
		∕lbd)	be, Mbl, N	in(Mb	= ØMi	Mb =	Ø					.1	e 7.2.2	Claus	.9	0	Ø _b =		
			kNm	.0	5	-								Мра	50	5!	fy =		
			ОК	.4) =	/ Ratio	pacity	C								,		
							ending										ar:	Shea	
						-				1	length	panel	shear	mm	500	36	a =		
Nc	,	tion ?	same locat	ar at s	d shea	g anc							depth	Î	7.70	·····	d1 =		
Nc			ame locat	ar at s =		-	² +(V*/(1019131			0								
Nc	/A					-	²+(V*/(·					ea. D	30	D.	kv =		
Nc						-	²+(V*/(3(4)	eq. D3 kN	.30).7				
Nc						-	²+(V*/()K	3(4)	eq. D3 kN	.30).7		Vv =	ø	Def
	/A	N	0.08	=	v) ²	_ ∕ØvV≀	² +(V*/(\6mn		K	3(4) O	kN	0.7	20	Vv = on:	ø lecti	Def
n/300	/A Spa	N,	0.08	=		_ ∕ØvV≀	² +(V*/(\6mn	×10′	0 <mark>K</mark> 32	3(4) O 2. :	kN =	0.7 ftive	20 I,eff	Vv = on: ts:	ø iecti Limit	Def
1/300 Ok	/A Spa Y	N, = 00	0.08	=	ν)² Ψ,ι Q	_ ∕ØvV≀	² +(V*/(\6mn	×10′	0 <mark>K</mark> 32	3(4) O 2. :	kN =	0.7	20 I,eff	Vv = on: ts:	ø iecti Limit	Def
Nc n/300 Ok n/78 Ok	/A Spa Y	N, = :00	0.08	=	v) ²	_ ∕ØvV≀	² +(V*/9			\6mn	×10′	0 <mark>K</mark> 32	3(4) O 2.: 5, raft	kN = usses	0.7 ftive	20 I,eff nber	Vv = on: ts: mer	Ø lecti Limit Roof	Def

+	к к			Benc Shea		55	acker 15x1.			10		ition: Sectio		Dr		RB7 3.5m		еі.	ຠ Lab າ (L):	
	K		bined				embe					Jech	20111	DC		5.511			1(L).	Spai
_	K		ection			1	empe		siligi											
	N		ction	Den																
					1										Γ					
						-		.5m	.) = 3	oan (L	al Sp	Tot								
		Max	4.6kN	-	RB*				-						*	=RA	kN	4.6	Max	
		Min	-5.5kN														5kN	-5.5	Min	
													/m	D1kN,	0.0	=	sw	5:	ding	Loa
			۸/m	0.8		=	.0m	3	х	kPa	27	0.	=	Dead	0		of	Ro		
			<n m<="" td=""><td>0.8</td><td></td><td>=</td><td>.0m</td><td>3</td><td>х</td><td>kPa</td><td>25</td><td>0.</td><td>=</td><td>Live</td><td></td><td></td><td></td><td></td><td></td><td></td></n>	0.8		=	.0m	3	х	kPa	25	0.	=	Live						
			<n m<="" td=""><td>-3.9</td><td></td><td>=</td><td>.0m</td><td>3</td><td>х</td><td>kPa</td><td>.29</td><td>-1.</td><td>=</td><td>d, up</td><td>Wind</td><td></td><td></td><td></td><td></td><td></td></n>	-3.9		=	.0m	3	х	kPa	.29	-1.	=	d, up	Wind					
			۸/m	1.6		=	.0m	3	х	kPa	54	0.	=	own	nd, d	Wi				
			۸/m	0.0		=			х	kPa			=	now	S					
acto	load	-	۸/m			=			х	kPa			=	Dead	0		all	W		
0.4	- Series	Ψ,c	‹N/m			=		ļ	х	kPa			=	Live						
0.7	- jour	Ψ,Ι	«N/m			=			х	kPa			=	Dead	C		or	Flo		
0.7	=	Ψ,s	‹N/m	0.0		=			х	kPa			=	Live						
																			d Ca	Loa
		N)		t Stat			viceal					v)			:e:	t Stat				
	kN/m	.8	-			₽,I Q		6.			kN/	.1		=				1.2G		
	kN/m	.3			Į	₽,s Q		7.			kN/	3.1		=		u,up				
	kN/m	.6	= 2.				Ws	8.			kN/	.6				,dw+				
					ation	Vibr	1kN	9.			kN/	.0		=		-ΨcQ				
										m	kN/	.1	1	=				1.350		_
																	ons:		ign /	Des
lin			Max		5	l.	-	3.		2.		L							Case	
kNn			4.0kN	.7	-	.5		1.0		1.8		.2				= W x				
5kN	-5	1	4.6kN	.9	1.	.7	1	1.6	4	5.5	-5	.7	3	=	2	x L /	· = W			•
																			acity	Сар
																_			Bend	
(D)	Append	· ·	<nm< td=""><td></td><td>-</td><td>Mo =</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>2.1.1(2</td><td></td><td>.0</td><td></td><td>Cb =</td><td></td><td></td></nm<>		-	Mo =								2.1.1(2		.0		Cb =		
	2.2.3(4)		<nm< td=""><td></td><td></td><td>/lol =</td><td>_</td><td></td><td>axes</td><td>bout y-</td><td>-</td><td></td><td></td><td></td><td></td><td>00</td><td></td><td>ey =</td><td></td><td></td></nm<>			/lol =	_		axes	bout y-	-					00		ey =		
	2.2.4(4)		<nm< td=""><td></td><td></td><td>lod =</td><td></td><td></td><td></td><td></td><td>ting</td><td>or twist</td><td></td><td>eff. lei</td><td></td><td>00</td><td></td><td>ez =</td><td></td><td></td></nm<>			lod =					ting	or twist		eff. lei		00		ez =		
		vibd)	e, Mbl, N			vib =	Ø						.1	e 7.2.2		.9	******	Ø _b =		
			kNm			=								1	Мра	50	5	fy =		
			ОК	.0		=	Ratio													
	-					-	endin										~-		Shea	
No			ame locat			-								shear		500		a =		
	'A	N,	0.23	=	/)'	ØvVv	+(V*/(∕Is)²∙	∕Øbľ	(M*,		b	ofwe	depth		7.70		d1 =		
_															eq. D	30		kv =	_	
_)K	0	kN).7	20	Vv =	-	
						_													lecti	Def
	Spar	=	3mm	=	Ψ,I Q	G+U				n4	6mn		32			tive		_	Limi	
0	Y		Span/3		1.4.7							etc)	ers,	, raft	isses	rs (tru	nber	mer	Roof	
115	Spa	=	11mm Span/2	=	Ws									ai ch	or ⁽ '				C - '''	
		1111	Snan/2		1									iisn	erfir	plast	vith	ngs v	ceili	
01 01 01	Y Y		Span/2					-					10	- 1		vertio		1.0		

	K	_		Bend			Stacke					tion				RB8		·c1.	m Lab	
	K	-		Shea	-		(11x0.)				on:	Secti	eam S	Be		1.9m			ו (L):	Spar
	K		bined			r	embe	le M	Singl	S										
	K	0	ection	Defl																
					-															
								9m) = 1	oan (L	al Sn	Tot								
_		Max	2.4kN	=	RB*				., – 1						*	=RA	.kN	2.4	Max	
		Min	-2.9kN													-101		-2.9	Min	
_			2.581															2.5		
													/m) D1kN/	0.0	=	sw	ç.	ding	loa
-			kN/m	0.8		=	.9m	2	x	kPa	27	0	=	Dead	8			Ro	u	200
			kN/m			=	9m		x	kPa	27 25		=	Live				1.0		
			kN/m			=	9m	human	x	kPa	.29		=		Wind					
			kN/m			=	9m		x	kPa	.29 54		=		nd, d					
\neg			kN/m			=		2	x	kPa	54	0.	=	now		VVII				
act	load	Livo	kN/m			-			x	kPa kPa			-	Dead	8		all	W	ļ	
0.	0	Ψ,c	kN/m						x	kPa kPa			-	Live	-		an	VV		
0. 0.	- Series	Ψ,υ	kN/m			=			x	kPa kPa			-	Dead	8		oor			
0. 0.		Ψ,1 Ψ,s	kN/m			=			x	кра kPa			=	Live	-		101	FIC		
0.	-	Ψ,5		0.0		-		I	X	ΝГd			-	LIVE		-			4.0	1.00
-			o. /	+ C+-+	(1:	hili-		6.0				•••	1			+ C+-+	11'		d Cas	LUd
-	LNL/-	N)		ι stat			viceat	-			1.01/	N)			le:	t Stat				
	kN/m		-		-	Ψ,I Q		6. 7			kN/i	.0		=				1.2G		
-	kN/m				۲ ا	Ψ,s C		7. o			kN/i	3.0		=		u,up				
\rightarrow	kN/m	.5	= 2.			\/;h	Ws 1kN	8.			kN/i	.5			1	i,dw+				
-					ration	vibr	TKIN	9.			kN/i	.0		=		ͱΨcQ				
-							_	-		m	kN/ı	.1	1	=				1.350		~
					-	<u> </u>		<u> </u>			-						ons:		sign /	Des
1in	-		Max		5	4.		3.		2.		L.						-	Case	
kNr			1.1kNr	.5	-).4		L.1		L.4		.9				= W x				
9kN	-2	N I	2.4kN	.0).9	0	2.4	2	2.9	-2	.9	1	=	2	/ x L /	* = W			-
\square																			acity	Сар
																		-	Bend	
(D)	Append		kNm		-	Mo =	_							2.1.1(2		0		Cb =		
	2.2.3(4)		kNm			/ol =	_		-axes	bout y-					1	00		ey =		
_	2.2.4(4)		kNm			1od =	_	_			ting	or twis	ngth fo	eff. ler	mm	00		ez =	-	
		/bd)	e, Mbl, N	n(Mt	ØMi	Mb =	Ø						2.1	e 7.2.2	Claus).9	0	Ø _b =		
			kNm	.0	2.	=								1	Мра	50	5	fy =		
			ОК	.7	0	=	Ratio	city	Сара	(
				ar:	d shea	g and	endin	ed b	nbine	Com								r:	Shea	
	· .	tion ?	ame locat	ar at s	d shea	g and	ending	m be	imu	Max		length	panel	shear	mm	900	19	a =		
No		NL	1.00	=	v) ²	ØvV	+(V*/(VIs) ²	∕Øьľ	(M*		b	ofwe	depth	mm	8.50	148	d1 =		
No	'A	IN/													eq. D3	30		kv =		
No	'A)K		kN	3.0	-	Vv =	ø	
No	/A																			
	'A																	on: 🛛	lecti	Def
		=	1mm	=	ΨιΟ	G + 1				n4	6mn	x10⁄	53	0.	=	ftive	l.eff		lecti Limit	Def
/14	Spai	=	1mm Span/3	=	Ψ,Ι Q	G + 1				n4	6mn		53 ers. (f tive rs (tru	-	ts:	Limit	Def
/14	Spai Y	=	Span/3			G + 1				n4	•6mn					f tive rs (tru	-	ts:	Limit	Def
No /14 01 n/46	Spai Y	= 300 =			Ψ,I Q Ws	G+				n4	•6mn			, raft	isses		nber	ts: mer	Limit Roof	Def

	m Lak n (L):			RB9 2.2m				tion: Secti		-			Doo		-	Shea	ding ar		-	OK OK	
Spai				2.2111		De	am	Jecu					embe				ai ibine)K	
											Singi	e w	empe	er 		-	ectic			OK OK	
																Dell	ecuc				
					Г																
								Tot	al Sr	oan (L) = 2	.2m									
	Max	5.7	′kN	=RA	*					```	·				RB*	=	5.1	7kN	Max		
	Min	-6.9	9kN														-6.	9kN	Min		
Loa	ding	s:	sw	=	0.0)1kN/	/m														
		Ro	of		E	Dead	=	0.	27	kPa	х	6	.0m	=		1.6	kN/	m			
						Live	=	0.	25	kPa	х	6	.0m	=		1.5	kN/	m			
					Winc	l, up	=	-1	.29	kPa	х	6	.0m	=		-7.7	kN/	m			
				Wi	nd, d	own	=	0.	54	kPa	х	6	.0m]=		3.2	kN/	m			
					S	now	=			kPa	x			=		0.0	kN/	m			
		W	all		C	Dead	=			kPa	х			=			kN/		_	load	fact
						Live	=			kPa	x			,=			kN/		Ψ,c		0.
		Flc	oor		-	Dead	=			kPa	х			=			kN/		Ψ,Ι		0.
						Live	=			kPa	х	l		=		0.0	kN/	m	Ψ,s	=	0.
Loa	d Ca																				
	Ultir			t Stat	te:		(\	∧)				Ser	vicea			t Sta	te:	()	w)		
	1.	1.2G				=		.2	kN/			6.	_	Ψ,Ι Q	-		=		.6	kN/r	
	-			u,up		=		5.3	kN/			7.		Ψ,s C	2		=		.7	kN/r	
	3.			ı,dw+				.2	kN/			8.	Ws				=	5	.2	kN/r	n
	4.			ŀΨcQ		=		.0	kN/			9.	1kN	Vibr	ation						
	5.	1.35				=	2	.2	kN/	m											
Des	sign /		ons:																		
	Case	-					-	l.		2.		3.	-	4.	-	5.		Max			Min
				= W x				.5		3.8		.1	-	2		.3		8.1kN			.8kN
-			* = W	/ x L /	2	=	4	.6	-6	5.9	5	.7	2	2.2	2	.4		5.7kN	N	-	6.9kN
Сар	bacity																				
		ding:																	-		
		Cb =		0		2.1.1(2								Mo =	-	5.1	kNm	-		Appen	
		ey=	********	00					-	bout y	-axes		_	Vol=		.5	kNm			2.2.3(4	
		ez =	·	00	1	eff. ler		or twis	ting					10d =	-	.5	kNn			2.2.4(4)
		Ø _b =).9	-	e 7.2.2	.1						Ø		ØMi		1		(baiv		
		fy =	5.	50	Мра									=		.0	kNn				
	<u>c'</u>										•		Ratio			.0	C)K			
	Shea		~										endin	-				 			
		a =		200		shear	-	-	1				ndin	-							N
		d1 =		5.00		depth	ofwe	b		(M*	∕ØbN	∕ls)'·	+(V*/	ØvV	v)⁺	=	U.	.32	N,	/A	
		kv =		30	eq. D3																
	-	Vv =	2	5.4	kN	0	K														
Det	flecti									_				6						_	
	Limi			ftive	-	1.3			\6mn	n4				G+	Ψ,Ι Q	=		nm	=	2 2	an/11
	KOO	mer	npei	rs (tru	usses	, raft	ers,	etc)							14/0	_		pan/3	500 	Y	0
	Ceili	nga		nlas+	or f:	lich				-		-		-	Ws	=		nm]=	8 8	an/30
		-		plast			17											oan/2		Y	0
		-ı Kež	4111 ('	verti	cal sa	g1, <1	⊾∠ini	11		1			1	1	1		_ >¢	pan/2	40	Y	0

	m Lab n (L):	ei.		RB10		R		ation Secti				Toilet		7 5		Ben Shea			-	ок Ок	
Spai				1./11	•	D	20111					le Me					nbined	1	-)K	
											Singi	le ivie	mbe	1							
	$\left \right $															Deri	ectio			ОК	
															1						
					1			To	tal Sp	oan (L) = 1	.7m		_							
	Max	0.9) kN	=RA	*					```					RB*	kN	Max				
	Min	-1.1	1kN														-1.1	.kN	Min		
Loa	dings	s:	sw	=	0.0)1kN	/m														
		Ro	oof		C	Dead	=	0.	27	kPa	х	1.2	2m	=		0.3	kN/m	n			
						Live	=	0.	25	kPa	х	1.2	2m	=		0.3	kN/m	n			
					Wind	l, up	=	-1	.29	kPa	х	1.2	2m	=		-1.5	kN/m	n			
				Wi	nd, d	own	=	0.	54	kPa	х	1.2	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			0.6	kN/m	n			
					S	now	=			kPa	х			=		0.0	kN/m	า			
		W	'all		C	Dead	=			kPa	х		2m = 2m = 2m = 2m = = = = = = = = (1) (1) (1) (1) (1) (1) (1) (1) (1) (1)			0.0	kN/m	n	Live	e loac	l fact
						Live	=			kPa	х		.2m = .2m = = = = = = = = = viceability Limi' G + Ψ,I Q			0.0	kN/m	า	Ψ,c		0.
		Flo	oor		C	Dead	=			kPa	x		1.2m = = = = = = = = = = = = =			0.0	kN/m	า	Ψ,Ι	=	0.
						Live	=			kPa	х			=		0.0	kN/m	۱	Ψ,s	=	0.
Loa	d Cas	ses:																			
	Ultin	nate	Limi	t Sta	te:		۱)	w)				Serv	iceal	bility	Limi	t Sta	te:	(v	~)		
	1.	1.2G	i + 1.!	5 Q		=	C).9	kN/	m		6.	G + V	₽,I Q			=	0	.3	kN/r	n
	2.	0.9G	i + W	u,up		=	-1	1.2	kN/	m		7.	G+U	₽,s Q	Į		=	0	.5	kN/r	n
	3.	1.2G	i+Wu	,dw+	-ΨcQ	=	1	.0	kN/	m		8.	Ws				=	1	.0	kN/r	n
	4.	1.2G	i+Su+	-ΨcQ		=	0	.4	kN/	m		9.	1kN	Vibr	ation						
	5.	1.35	G			=	C).5	kN/	m											
Des	sign A	Actio	ons:																		
	Case	s:						1.		2.	:	3.	2	1 .	5	j.		Max			Min
					L^2/	=	0).3	-().5	C).4	0	.1	0	.2	0.	4kNı	m	-0).5kN
	Shea	ır, V'	* = W	xL/	2	=	0).7	-1	1.1	C).9	0	.3	0	.4	0).9kN	<u>i</u>	<u> </u>	1.1kN
Сар	pacity	/:																			
	Benc	ding:																			
		Cb =	1	.0	(eq D2	2.1.1(2	! <i>))</i>							Mo =	15	5.1	kNm		(D2.1	Appen	dix D)
		ey =	;	00	mm	eff. le	ngth fo	or bucl	ding a	bout y	-axes			/lol =		.2	kNm		eq. 7.	2.2.3(4	!)
		ez =		00	mm	eff. le	ngth fo	or twis	ting					lod =		.2	kNm			2.2.4(4	!)
		Ø _b =	0	.9	Clause	e 7.2.2	2.1						Ø	Nb =	ØМі	n(M	be, M	bl, N	/lbd)		
		fy =	5	50	Мра									=	1	.2	kNm				
											Сара	acity R	atio	=	0	.4	0	К			
	Shea	ır:								Com	nbine	ed bei	ndin	g anc	shea	ar:					
		a =	17	700	mm	shear	panel	length	1	Max	imu	m ber	nding	g and	shea	ar at s	same	locat	tion	?	N
		d1 =	87	.00	mm	depth	ofwe	b		(M*	∕Øbľ	VIs) ² +((V*/	ØvVv	/) ²	=	0.1	17	N	/A	
		kv =	6.	30	eq. D3	3(4)															
	d	Vv =	5	.1	kN	C	К														
	Ψ																				
Def	flectio	on:					17	x10/	\6mr	n4				G + 4	Ψ,I Q	=	1m	m	=	Spa	an/15
Def	-		l,eff	tive	=	0.	1/	~				_									
Def	flection Limit	ts:			= usses												Spa	an/3	00	Ŷ	0
Def	flection Limit	ts:													Ws	=	Spa 3m		00 =	Ŷ	O an/5

DK DK				Shea	4		15x1.													
		d	bine	Com			embe					Secti	ann	De		3.1m			า (L):	Spai
ж			ectic		-	r	eme	e ivi	singi	3										
	0		ecuc	Den																
															Г					
						_		05m) = 3.	an (L)	al Sp	Tot			4					
	Max	3kN	5.3	=	RB*						·				*	=RA	kN	5.3	Max	
	Min	4kN	-6.			1	1				1						1kN	-6.4	Min	
													/m)1kN/	0.0	=	sw	5:	dings	Loa
		m	kN/	1.1		=	0m	4.	х	kPa	27	0.	=	Dead	0		of	Ro		
		m	kN/	1.0		=	0m	4.	х	kPa	25	0.	=	Live						
		m	kN/	-5.2		=	0m	4.	х	kPa	.29	-1	=	l, up	Wind					
		m	kN/	2.2		=	0m	4.	х	kPa	54	0.	=	own	nd, d	Wi				
		m	kN/	0.0		=			х	kPa			=	now	S					
e load fac	-		kN/			=			х	kPa			=	Dead	0		all	W		
	Ψ,c		kN/			=			х	kPa			=	Live					ļ	
	Ψ,Ι		kN/			=			х	kPa			=	Dead	0		or	Flo	ļ,	
= (Ψ,s	m	kN/	0.0		=		l	х	kPa			=	Live						
																		ses:	d Cas	Loa
	w)	(\	te:	t Stat	/ Limi		1	Ser				v)	(\		:e:	t Stat				
kN/m	.1	1	=			₽,I Q		6.			kN/ı	.8	2	=				1.2G		
kN/m	.8		=		۱	₽,s C		7.			kN/ı	.2		=		u,up				
kN/m	.5	3	=				Ws	8.			kN/ı	.5				ı,dw+				
					ation	Vibr	1kN	9.			kN/ı	.3		=		ͱΨcQ				
										n	kN/ı	.5	1	=				1.350		
								_									ons:		sign A	Des
Mir		Max		5.		l.	-	3.		2.		L.						-	Case	
-4.9k		.0kN		.7		.5		.0		.9		.3				= W x				
-6.4k	N	5.3kN		.2	2	.0	2	.3	5	.4	-6	.3	4	=	2	/ x L /	` = W		Shea	_
																			acity	Cap
																			Benc	
Appendix D	· ·		kNn	5.1 -	-	Mo =								2.1.1(2		.0		Cb =		
2.2.3(4)			kNm	.7		/lol =			axes	bout y-	-			eff. ler		00		ey =		
2.2.4(4)			kNn	.7		lod =					ung	or twis		eff. ler		00		ez =		
	(Daiv		1		ØMi		Ø						.1	e 7.2.2	1).9		Ø _b =		
			kNn	.0		=									Мра	50	5	fy =		
		ЭК		.0		=	Ratio		•										<i>c</i> ,	
	1 - 7				d shea	-											~		Shea	
	tion ?											-		shear	2)50		a =		
/A	N,	.25	U.	=	/) [*]	ØvV۱	-(V*/	/ls)^+	∕ØbN	(M*,		b	ofwe	depth		7.70		d1 =		
															eq. D3	.30		kv =		
		-											K	0	kN	0.8	20	Vv =		D - 1
					 	<u> </u>								_		 r. ·			lecti	Del
Span/1	=	nm 		=	Ψ,Ι Q	G+				า4	6mn			2.3		ftive		_	Limit	
Y (ban/3		_	14/2							etc)	ers,	, raft	isses	rs (trı	npei	mer	ROOT	
Span/	=	nm		=	Ws			-						lich	or f:	nlast	.,;+h		Call	
Y (ban/2 ban/2											1			plast vertio		-		

	K	_	-	Bend	-	FF	air				ation		_		RB12	•	n Label:	
	K			Shea	-		5x15x1.			on:	Secti	eam	Be	า	2.1m		(L):	Spar
	K		bined]	er	Membe	Single	S		_		_			_		
	K	0	ection	Defl												_		
														Г		_		
							n) = 2.1r	oan (L	tal Sp	To							
		Max	5.5kN	=	RB*			,						*	N =RA	5.5kľ	Max 5	
_		Min	-6.7kN						-				1			6.7k		
												/m	01kN	0.0	N =	s۱	dings:	Loa
_			kN/m	1.6		=	6.1m	x	kPa	.27	0.		, Dead	~	f	Root		
_			kN/m			=	6.1m	x	kPa	.25			Live					
			, kN/m			=	6.1m	х	kPa	.29			d, up	Wine				
			, kN/m			=	6.1m	х	kPa	.54			down					
			, kN/m			=	-	х	kPa	-			Snow	-				
act	load	Live	kN/m			=		x	kPa				Dead	m -		Wal	l	
0.	8	Ψ,c	, kN/m		1	=		х	kPa				Live	~				
0.		Ψ,Ι	, kN/m			=		х	kPa				Dead	[r	Floo	F	
0.		Ψ,s	, kN/m			=		х	kPa			=	Live					
											-					s:	d Cases	Loa
		N)	e: (v	t Stat	y Limi	bilit	erviceal	S			w)	(te:	mit Stat			
	kN/m					Ψ,Ι Q		6	m	kN/ı	4.3		=		1.5 Q			
	kN/m				-	Ψ,s C		7		kN/i	6.4		=		Wu,up			
	kN/m							8		kN/i	5.3		2 =		Nu,dw+		-	
					ration	l Vibr	. 1kN	9		kN/i	2.0	2	=	1	Su+ΨcQ			
										kN/i	2.2	2	=			35G	5. 1.3	
															IS:	tion	ign Act	Des
/lin			Max	5.	5	4.	4	3.	2.	2	1.						Cases:	
δkNι	-3.	m	2.9kNi	.2	1	1.1	1	2.9	3.5	-3	2.4	2	/=	L^2/	/l*= W x	nt, N	Momer	
7kN	-6	1	5.5kN	.4	2	2.1	2	5.5	6.7	-	4.5		=	′2	WxL/	V* =	Shear, V	
			Ì														acity:	Cap
																ng:	B endin	•
x D)	Appena	(D2.1	kNm	5.1	= 15	Mo =	1					2))	2.1.1(2	(eq D.	1.0		Cb	
	2.2.3(4)	eq. 7.2	kNm	.7	= 9	Mol =	N	axes	bout y-	kling al	for bucl		ı eff. lei	1	900	/ =	Ley	
	2.2.4(4)	eq. 7.2	kNm	.7	= 9	/lod =	M			ting	for twis	ngth f	eff. lei	mm	900		Lez	
		/bd)	be, Mbl, N		= ØMi	Mb =	Ø						se 7.2.2	1	0.9		Øb	
		,	kNm		-									Mpa	550	-	fy	
			OK	.0 .7) =	ty Ratio	Canacit	6				-	pc	330		19	
_							bending	•									Shear:	
				ar:	d shea	ig ang	~~~~~~		_	h	llonati) shear	mm	2100	a =		
N	,	tion ?				-	bending			1		pane		5		-		
N			ame locat		d shea	g and			(M*					mm	187 70	1 = 1	d1	
N		tion ? N/		ar at s	d shea	g and	bending) ² +(V*/((M*,				depth		187.70 6.30	_	d1 kv	
N			ame locat	ar at s	d shea	g and			(M*,			h of we	1 depth 93(4)	eq. D.	6.30	/ =	kv	
N			ame locat	ar at s	d shea	g and			(M*,				1 depth 93(4)			/ = / =	kv ØVv	Def
	/A	N,	ame locat 0.22	ar at s =	d shea v) ²	g and					eb	h of we	depth 93(4)	eq. D. kN	6.30 21.1	/ = / = 1:	kv ØVv ection	Def
1/23	/A Spa	N/	ame locat 0.22 1mm	ar at s =	d shea	g and				^6mn	eb x104	h of we DK .32	1 depth 03(4) 0 2.	eq. D. kN =	6.30 21.1 efftive	/ = / = [1: ,	kv ØVv ection Limits:	Def
1/23 0	'A Spa Y	N/	ame locat 0.22 1mm Span/3	ar at s = =	d shea v)² Ψ,I Q	g and					eb x104	h of we DK .32	1 depth 03(4) 0 2.	eq. D. kN =	6.30 21.1	/ = / = [1: ,	kv ØVv ection Limits:	Def
	'A Spa Y	N/ = 000 =	ame locat 0.22 1mm	ar at s = =	d shea v) ²	g and					eb x104	h of we DK .32	1 depth 3(4) 2. s, raft	eq. D. kN = usses	6.30 21.1 efftive	y = y = 1: I, nemb	kv ØVv ection Limits: Roof m	Def

	K	_		<u> </u>	Ben Shea				Stud x45x1		14		tion:	eam S	Be		RB13 3.7m			m Lab า (L):	
	K	-	. d	bine				******	******			011.	Secu		DE		5.711			·(L).	зраі
							і Б)		Boxe) sid	Dou										
	K	0	on	ectio	Defi																
						1										Г					
_							-		.7m	.) = 3	oan (L	tal Sp	Tot		•						
		Max	1kN	7.1	=	RB*										*	=RA	kN	7.1	Max	
		Min	5kN	-8.														5kN	-8.5	Min	
														/m) J1kN/	0.0	=	sw	s:	ding	Loa
			m	kN/r	1.2		-	m	4.4	x	kPa	27	0.	=	Dead			of	Ro		
				, kN/r				m	4.4	x	kPa	25		=	Live						
				, kN/r				m	4.4	x	kPa	.29	f	=	d, up	Wind					
				, kN/r			-		4.4	x	kPa	54	}	=	own						
				, kN/r			:			х	kPa	-		=	now						
acto	load	Live		kN/r			:			x	kPa			=	Dead	8		all	W	l	
0.	0	Ψ,c		kN/r						x	kPa		·····	=	Live			******		<u> </u>	
0.		Ψ,Ι		kN/r			:			x	kPa			=	Dead	C		or	Flc	ļ	
0.		Ψ,s		kN/r			:			x	kPa			=	Live						
		,-		,.					8	,	-		5						ses:	d Cas	Loa
		v)	()	te:	t Stat	Limi	litv	ceah	Sen				∧)	6		e.	t Stat	limi			_54
-	kN/n		· · ·	=				G + 4	6.		m	kN/	.1		=			+ 1.5		. I	
	kN/n			=		-		G + 4	0. 7.			kN/	. <u> </u>		=		u,up			1	
_	kN/n		-	=		L	,3 Q	Ws	7. 8.			kN/	.8			.ΨcΟ	i,dw+			.	
-		.0		-		ation	/ihra	-	9.			kN/	.4			1	-ΨcQ			F	
_						ation	IDIO	TKIN	5.			kN/			=		ΨtQ		1.350	.	
-												KIN/		-	_					sign A	Doc
1in			Max			5		4	3.		2.		 L.	1				лıз.		Case	Des
kNı			5.5kNi	6				2.	5. 5.5		z. 7.9		.3		_	142/	= W x	N/*-			
5kN			7.1kN		.8 .0			2.	 		3.5		.7		=					Shea	
	-0		7.1KN		.0	3			.1		5.5	-0	. /	5	-	2		- vv			Can
																				acity	Сар
				1.01.0		4 5												4	-	Benc	
(D)	Append			kNm	5.1 -	-	lo =								2.1.1(2	<u></u>	0		Cb =		
	2.2.3(4)			kNm	.7		ol =			-axes	bout y-	-			eff. ler		00		ey =		
_	2.2.4(4)			kNm	.7		d =					ting	or twis		eff. ler	-	00		ez =		
		/ibd)	۸bl, N	1			b =	ØN						2.1	e 7.2.2	Claus	.9		Ø _b =		
				kNm		10	=								1	Мра	50	55	fy =		
			ЭК	C	.8		=		city F	•											
						Ishea		-			_							-		Shea	
N	·	tion ?	locat	F	ar at s			-				1	length	panel	shear	mm	700	37	a =		
	A/	N/	.30	0.	=	/) ²	vVv	V*/Ø	/ls)²+	∕ØьN	(M*		b	ofwe	depth	mm	7.70		d1 =		
															3(4)	eq. D	30		kv =		
)K	0	kN	L.4	41	Vv =	-	
																			on:	lecti	Def
											-						tivo	l,eff	ts:	1:00:4	
/10	Spa	=	nm	4n	=	Ψ,I Q	5 + L				n4	\6mn	x10′	14	4.	=	uve	1,011		Limit	
	Spa Y		nm pan/3		=	Ψ,I Q	5 + L				n4	\6mn			4. : 5, raft					_	
0	Ŷ			Sp		Ψ,I Q Ws	j+ €				n4	•6mn								_	
/10 01 n/33	Ŷ	00 =	pan/3	Sp 11r			3 + L				n4	`6mn			s, raft	usses		nber	mer	Roof	

Snar	m Lab າ (L):	Jei.		RB14 3.7m		Re		tion Secti		10		Study x45x1		55		Ben Shea				ок Ок	
Spai				5.711								e Me					bine	4	-	Ж	
										•	Siligi	e ivie	mbe	1		-					
																Deri	ectio	11)K	
					Γ										1						
					4			Tot	tal Sp	oan (L	.) = 3	.7m			•						
	Max	1.9) kN	=RA'	ŧ										RB*	=	1.9	kN	Max		
	Min	-2.3	3kN														-2.3	kN	Min		
Loa	ding	s:	sw	=	0.0)1kN,	/m														
		Rc	oof		۵	Dead	=	0.	27	kPa	х	1.2	2m	=		0.3	kN/n	n			
						Live	=	0.	25	kPa	х	1.2	2m	=		0.3	kN/n	n			
					Wind	l, up	=	-1	.29	kPa	х	1.2	2m]=		-1.5	kN/n	n			
				Wir	nd, d	own	=	0.	54	kPa	х	1.2	2m]=		0.6	kN/n	n			
					S	now	=			kPa	х			=		0.0	kN/n	n			
		W	'all		0	Dead	=			kPa	х			=		0.0	kN/n	n	-	e loac	l fact
						Live	=			kPa	х			=			kN/n		Ψ,c		0.
		Flo	oor		C	Dead	=			kPa	х			=			kN/n		Ψ,Ι		0.
						Live	=			kPa	х			=		0.0	kN/n	n	Ψ,s	=	0.
Loa	d Ca	ses:																			
	Ultin	nate	Limi	t Stat	e:		(\	∧)				_	iceal	bility	Limi	t Sta	te:	()	∧)		
		1.2G	5 + 1.5	5 Q		=	0	.9	kN/	m		6.		₽,I Q	-		=	0	.3	kN/r	n
		0.9G	5 + W	u,up		=	-1	.2	kN/	m		7.	G + V	₽,s Q	۱		=	0	.5	kN/r	n
	-	1.2G	i+Wu	,dw+	ΨcQ	=	1	.0	kN/			8.	Ws				=	1	.0	kN/r	n
	F 1			-ΨcQ		=	0	.4	kN/			9.	1kN	Vibr	ation						
		1.35				=	0	.5	kN/	m											
Des	ign /	Actio	ons:				_		_		_		_								
	Case	-						l.		2.		3.	4	l .	5	.		Max			Min
				= W x		=		.5		2.1		8		.7	-	.8		8kN			2.1kN
			* = W	/x L/2	2	=	1	.6	-2	2.3	1	.9	0	.7	0	.8	1	L.9kN	1	-	2.3kN
Сар	acity																				
	Bend	ding:																			
		Cb =		.0	(eq D2	2.1.1(2	"))							Mo =	-	5.1	kNm		(D2.1	Appen	dix D)
		ey =		00					-	bout y	-axes			/lol =		.7	kNm			2.2.3(4	
		ez =		00	mm	eff. lei	ngth fo	or twis	ting					lod =		.7	kNm			2.2.4(4	1)
		Ø _b =	0	.9	Claus	e 7.2.2	.1						ØI	Mb =	ØМі	n(M	be, M		∕lbd)		
		fy =	5	50	Mpa									=	5	.0	kNm				
											•	city F				.4	0	К			
	Shea	ar:	_							_				-	d shea						
		a =	37	700	mm	shear	panel	length	ו					-		ar at s	ame		tion	?	N
		d1 =	187	7.70	mm	depth	ofwe	b		(M*	∕ØьN	∕ls)²+	(V*/	ØvV	/) ²	=	0.0	08	N	/A	
		kv =		30	eq. D3	3(4)															
	Ø	Vv =	20).7	kN	0	K														
Def	lecti	on:																			
	Limi	ts:	l,eff	tive	=	2.	32	x10⁄	\6mr	n4				G + 1	Ψ,Ι Q	=	2m	nm	=	Spa	an/21
	Roof	mei	mber	rs (tru	isses	, raft	ers,	etc)									Sp	an/3	00	Y	0
										1					147-		Гто			C~	anle
				plast											Ws	=	5 m	im	=	Sh	an/6

	m Lab	ei:		FL1				tion				Linte			-		ding			ЭК	
Spar	n (L):			0.6m		Р	late S	Secti	on:			89LC7			9	Shea	ar		C	ОК	
Dep	th (h)	:	1	10mr	n		Web	o Ang	gle:		90	Odegr	ee			Defl	ectio	on	C	Ж	
				[W	(kN/	′m)]	Тор	Cho	ord R	estra	int	=	0.9
	Der	oth (ł	h) _	`	\square				\square				\mathbf{N}	B	ottom	Cho	ord R	estra	int	=	0.6
		(1	., 	/		\mathbf{N}		$\mathbf{\mathbf{N}}$		\mathbf{N}			\square								
Max	0.9	κN	=RA'	*			Tot	al Sp	oan (I	L) = 0.	6m			RB*	=	0.9	kN	Max			
Min	-1.1	.kN			•											-1.1	1kN	Min			
loa	dings		Inco	ming	Trus	s/Ini	ste S	nacir	חס =	0.9)m	crs		No	of Poi	ntl	heo	on Re	am	=	1
LUa	uniga	Ro		iiiiig)ead	=		ישי 27	kPa			2m	=		-	_		am	-	-
						Live			25	-	x		2m	=			kN/				
						-	=		.29	kPa	x		2m	-			kN/				
					Wind		=		.29 54	kPa	x		2m	=	•		kN/				
				Wir	nd, d	own	=	0.	54	kPa	х	1.,	2111	=		0.6	kN/	m			
Loa	d Cas			_								_				_					
	Ultin				e:			v)							Limit	Stat	te:		v)		
	1.	1.2G	+ 1.5	Q		=	0	.8	kN/	m		6.	G+	Ψ,I Q			=	0	.3	kN/r	
			+ Wı			=	-1	3	kN/	m		7.	Ws				=	1	.0	kN/r	n
	3.	1.2G	+Wu	,dw+	ΨcQ	=	1	.0	kN/	m		8.	Q2 =	= 1.1k	N						
	4.	1.2G	+Su+	ΨcQ		=	0	.4	kN/	m											
	5.	1.350	G			=	0	.4	kN/	m											
Des	sign A	Actic	ons:		(P, p	oint	load	= w >	k inc	omin	g tru	ss or	joist	spac	ing)						
	Case	s:					1	L.		2.		3.	4	4.	5.			Max		_	Min
	Mom	ent((M*)\	N x L	^2/8	=	0	.0	-0).1	C).0	C).0	0.0)	_).1kNi	~	_	.2kN
					PL/4	=	0	.1	-0).2	C).1	C).1	0.1	L		. TKINI	11	-0	.ZKIN
	Shea	r(V*)	V	VL/2	=	0	.3	-().4	().3	C).1	0.1	L		0.01-6			1 41.4
					P	=	0	.8	-1	l.1	C).9	C).3	0.4	1		0.9kN		-	1.1kľ
Cap	acity	:																			
- 1-	Bend																				
		-	el pla	te se	ctior	 ו	=	8	9LC7	5 G55	0										
			ctive				=		nm			h - choi	rd den	th)							
			Chor			nt	=		90	m	ucpl				l Restr	aint	=	0	60	m	
		•	rd Ax				=		.00	kN					apacit		=	-	.6	kN	
		Choi				رہ Mn			.00 96	kNm	1	CIU			· · · · · ·	y Mn		0.		kNm	
			(Сара	city R				15	ОК				Capa	city Ra				18	ОК	
	Shea	r.		•		-										-		0.			
						have	diac			vida	ר אבי			woh	plates	00	hoth	cide			
Dof	lection		u stu(us WI	un 2/	TOB 2	screw	75, TI)	k (0 t	op an	00 00	Jucom		rd WI	th 10g	scre	:ws -	- 2000	15		
Det	Limit		l,eff	tive	_	0	19	x10⁄	\6mn	n4				G + I	Ψ,I Q =		On	nm	=	Sna	n/40
	Roof													0 + 1	τ, Q ·	_		ban/3		Y	0
								- 1							Ws =	-		nm	=	-	n/12
			. مالد:	alact	orfin	hich												ban/2	00	Ŷ	0
	Ceili	ngs v	with	plast	erm	11311											10				

Bear).6m		-	Loca				G	39LC7	75				ding			OK OK		┢
Span).om		Р	late S					idegi	-			Shea				ЭК		$\left \right $
Dept	th (h)):	4(JUIIII	n		Web	Ang	gle:		43	aegi	ee			Defl	ectio	on	(ЭК		-
				r					(1 /					-	-	c '					~	
				、				W	(kN/	m)	<u> </u>			_				estra		=	0.9 0.9	
	De	pth (l	h) 🕂										\mathbb{N}	Bo	otton	n Cho	ord R	estra	int	=	0.:	71
			\ 	/ 																		-
Max	4.7		=RA*		_		Tot	al Sp	an (L	.) = 0.	6m			RB*	=		'kN	Max				-
Min	-5.7	/KIN														-5.	7kN	Min				+
Load	dina		Incor	mina	True	c/loi	icto C		- -	0.9	m	ore	-	No	of Do	in+ 1	ood /	on Be		=	1	+
LOad	uing		Incor of	ning		S/JOI	=		ıg = 27	kPa		crs 6.	0m	=					am	=	1	+
						Live	-		25	kPa kPa	X		0m	=			kN/					+
					Winc		-		.29	кра kPa	x x	ļ	0m	=			kN/					+
					nd, d		-		54	кга kPa	x		0m	=			kN/					┝
				vvii		now	-			kPa	x			=			kN/					┝
102	d Ca	د٥د.			3	100	-			ĸга	^	L				0.0	KIN/					┝
			Limit	Stat	6.		(v	<i>\</i>)				Son	/icea	bility	limi	t Sto	te:	1	v)	-		┝
	1.		i + 1.5			=	4.		kN/i	m		6.	1	Ψ,I Q	ann	. Jid	=	•	v) .6	kN/ı	n	┢
	1. 2.		i + Wu			-	-6		kN/i			0. 7.	Ws	· ,. •			-		.0 .2	kN/r		╞
	2. 3.		i+Wu,		ΨcΟ			. 3 2	kN/i			7. 8.		= 1.1k	N							t
	3. 4.		i+Su+			=		9	kN/i						•							t
	5.	1.35				=	2		kN/i													t
	ign /				(P. p						g tru	ss or	ioist	spaci	ng)							t
	Case						1			<u>2</u> .	-	3.	1	1.				Max			Min	ـــــــــــــــــــــــــــــــــــــ
			(M*)V	V x L	^2/8	=	0.	2	-0).3	C	.2	C).1	0.	.1						
					PL/4		0.).8		.7).3		.3	0	.7kN	m	-0	.8kN	m
	Shea	ar(V*	•)	v	VL/2	=	1.	3		.9	1	6	C).6	0.	.7			_			
		-			Р	=	3.	8	-5	5.7	4	.7	1	7	2.	.0		4.7kN	1	-	5.7kľ	N
Сар	acity	/ :																				
	Bend	ding:																				
		Linte	el plat	te se	ctior	า	=	8	9LC7	5 G55	0											Γ
		Effe	ctive	Dept	th		=	350	mm	(Linte	l dept	h-cho	rd dep	th)								
		Тор	Chord	d Res	strair	nt	=	0.	90	m		Bot	tom (Chord	Rest	rain	=	0.	90	m		
		Cho	rd Axi	al Ca	apaci	ty	=	16	.00	kN		Cho	rd A>	cial Ca	apaci	ty	=	1	.6	kN		
					+ 9	ðMn	=	5.	60	kNm	1				- Ç	ðMn	=	5.	60	kNm	ו	
			C	Capad	city F	latio	=	0.	12	ок				Capa	city R	latio	=	0.	15	ОК		
	Shea	ar:																				
			o Diag					=	0.	57	m	(Lint	el dept	h/SIN (web a	ngle)						
		Diag	onal /	Axial	l Cap	acity	,	=	1	.6	kN											_
			Scre			•	city	=	2	.4	kN/	scre	v	(10g f	raming	g screv	v on 0.	75BM	T)			L
		No.c	of Scre	ew P	er Jo	int		=		4												L
			t Con					=		.6	kN									-		_
		ØVn	= Mir	n (Di	agon							ectio	on Ca	pacit	y) x S	IN (\	Veb.	Angle	e)			L
					•		ØVn		-	79	kN									<u> </u>		L
				(apa	city F	Ratio	=	0.	69	ОК											_
D			l,efft	ive	_	2	30	v104	\6mn	n4				G+U		_	00	nm	=	Spa	n/276	62
Def	limi	ι3.	i,ent	ive	-				onn					0 - 0	r,1 U	-		ban/3		y Spa	3	03)K
	Limi Roof	mer	mbers	s (tru	isses	, raft	ers, e	2LC)									5	Jani/ J	00			21/
		mer	mbers	s (tru	isses	, raft	ers, e	:(C)							Ws			nm	=		in/86	

	ım Lak n (L):	/СП		GB1 2.1m		Be		ation Secti		L		Entry x45x		5		She	ding ar			OK OK	
			L	-					_	9	Singl	e Me	mbe	r			bine	d	C	ж	
										8							ectio			ж	
								Tot	tal Sp	oan (L	.) = 2	.1m									
	Max	4.7	7kN	=RA	*										RB*	=	4.7	7kN	Max	[
	Min	0.1	lkN														0.1	lkN	Min		
																			_		
Loa	ading	s:	sw	=	0.0)1kN/	/m														
	_	Rc	oof		0	Dead	=	0.	27	kPa	х	1.2	2m	=		0.3	kN/r	n			
						Live	=	0.	25	kPa	х	1.2	2m	=		0.3	kN/r	n	_		
					Wind		=	-1	.29	kPa	х	1.2	2m	=			kN/r				
				Wi	nd, d		=	0.	54	kPa	х	1.2	2m	=			kN/r				
					8	now	=			kPa	х			=			kN/r				<u> </u>
		W	'all		ê	Dead	=	0.	42	kPa	х	2.	7m	=			kN/r		_	e load	8
	-				8	Live	=	-	= -	kPa	х	-		=			kN/r		Ψ,c		0
	F	loor	+Dec	:K	-	Dead	=		50	kPa	Х		8m	=	-		kN/r		Ψ,Ι		0
						Live	=	1.	50	kPa	Х	0.8	8m	=		1.2	kN/r	n	Ψ,s	=	0
Loa	ad Ca											-									
				t Stat	te:			w)	/			-	1		' Limi	t Sta			w)	/	
			i + 1.			=		.5	kN/			6. 7		₽,I Q			=		2.7	kN/I	
				u,up		=).1	kN/			7.		₽,s C	۱ ا		=		2.9	kN/I	
	3. 4.			ı,dw+ ⊦ΨcQ	1	=		8.4 2.7	kN/ kN/			8. 9.	Ws 1kn	Vibr	ation		=	1	0	kN/ı	n
	4. 5.	1.35		FΨCQ		-		<i>7</i> 2.5	kN/			9.	TKIN		ation						
De	sign /					-	2		KINZ												
00	Case							1.		2.	:	3.	4	ļ.		5.		Max	(Min
		-	M*:	= W x	1^2/	=		2.5).1		9		 .5	-	.4	2	.5kN		0	.1kN
	_			/xL/		=			-).1		.5		.9	-	.6		4.7ki			0.1kN
Car	pacity				_																
Car	Bend																				
		Cb =	1	0	lea D2	2.1.1(2))							Mo =	15	5.1	kNm	1	(D2.1	Appen	dix D)
		.ey =		00	1			or bucl	kling a	bout y-	-axes			/lol =		7.8	kNm			2.2.3(4	
		, .ez =	1	00	2			or twis	-	Í				lod =		5.9	kNm			2.2.4(4	
		Ø _b =	0).9	Claus	e 7.2.2	.1						Ø	Mb =	ØМ	in(M	be, N	1bl, I	Nbd)		
		fy =		50	Mpa								-	=		3.6	kNm				
		• • •			pu			-	-		Cana	city F	Ratio	=		.2)К	-		
	Shea	ar:										ed be		g and							
		a =	21	100	mm	shear	panel	length	ו	_				-			same	loca	tion	?	N
		d1 =		5.00		depth		-				∕ls)²+		-		=		02		/A	K
		kv =		30	eq. D3		5, 100	-			, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		/								
	ø	Vv =	-).1	kN		K														
De	flecti																				
	Limi		l,eff	ftive	=	10	.30	x10	\6mr	n4				G + 1	 Ψ,I Q	=	0n	nm	=	Sp	an/63
			1	rs (tru										-	, _			oan/3		Y	C
						,	/								Ws	=		nm	=		an/16
	Ceili	ngs	with	plast	erfir	nish											-	an/2	200	Ŷ	С
		-		-			12mı		-	-	-	-			-	-		oan/2		N/A	

	DK DK	C		ar	Bend Shea		******	(15x2.		C290			ition: Sectio				GB2 2.4m			m Lab า (L):	
	Ж	0			Com		r	embe	e M	Sing	9										
	Ж	C	n	ectio	Defl																
						1										Г	_				
_									.4m	.) = 2	an (L	al Sp	Tot				_				
		Max	.kN	5.1	=	RB*										*	=RA	lkN	5.1	Max	
		Min	2kN						_								_	2kN		Min	
_														/m) D1kN/	0.0	=	<u></u>	••	ding	100
-			n	kN/ı	0.8		=	.9m	2	x	kPa	27	0	=	Dead	3	_	sw oof		uiiig:	LUa
-				kN/i			=	.9m		x	kPa	25		=	Live	-					
				kN/ı			=	.9m	hanne	x	kPa	.29		=	-	Wind					
				, kN/ı			=	.9m		х	kPa	54		=		nd, d					
				kN/ı			=			х	kPa			=	now	S					
acto	e load f	Live	n	kN/ı	1.1		=	.7m	2.	х	kPa	42	0.	=	Dead	C		'all	W		
0.	- fanna	Ψ,c	n	kN/ı	0.0		=			х	kPa			=	Live						
0.	500000	Ψ,Ι		kN/ı			=	.3m	0	х	kPa	50	0.	=	Dead	0		oor	Flo		
0.	=	Ψ,s	n	kN/ı	0.5		=	.3m	0.	х	kPa	50	1.	=	Live		_				
																			ses:	d Cas	Loa
		v)	(v	te:	t Stat			viceal					v)	(v		te:	nit Sta				
	kN/m		2.	=		-	₽,I Q		6.			kN/ı	.3		=		.5 Q				
_	kN/m		2.	=			₽,s Q		7.			kN/ı	9		=		Vu,up				
-	kN/m	5	2.	=				Ws	8.			kN/ı	.2			1	u,dw+				
-						ation	Vibra	1kN	9.			kN/ı kN/ı	.7 .8		=		ι+ΨcQ		1.2G 1.35		
+											11	KIN/I	.0	Ζ.	-		:			sign A	Des
lin	M	1	Max		j.	5	l.	4	3.		<u>.</u>	2	L.	1			-			Case	
kNr	-1.3	n	.1kNr	3	.0	2	.9	1	3.1	3	3	-1	.1	3	=	L^2/	*= W x	, M*	ent	Mom	
2kN	-2.2		5.1kN		.4	3	.2	3	5.1	5	.2	-2	.1	5	=	2	NxL/	* = V	r, V'	Shea	
																			:	acity	Сар
																			ling:	Benc	-
D)	Appendix	(D2.1		kNm	5.1	15	No =))	2.1.1(2	(eq D2	1.0		Cb =		
	2.2.3(4)	eq. 7.		kNm	.8		/lol =	Ν		axes	bout y-	ling al	or buck	ngth fo	eff. ler	mm	900	ç	ey=	L	
	2.2.4(4)			kNm			od =					ting	or twist	ngth fo	eff. ler	mm	900	9	ez =	L	
		/lbd)	1bl <i>,</i> N	be, N	n(Ml	ØMi	Vlb =	Ø						.1	e 7.2.2	Claus	0.9	(Ø _b =		
				kNm	8.6	13	=									Мра	550	5	fy =		
			K	C	.2	-	=	Ratio													
							-	endin											r:	Shea	
No	?	ion ?			nr at s			nding					length	panel	shear	mm	2400	2	a =		
	/A	N,	02	0.	=	/) ²	ØvVv	+(V*/(∕Is)²-	∕Øьľ	(M*		6	ofwel	depth		35.00		d1 =		
_																eq. D3	5.30	-	kv =		
_														K	0	kN	59.5	5	Vv =		
1							-													lecti	Def
	Span	=	1m 			₽,I Q		<u> </u>				6mm					fftive			Limit	
0	Y		an/2												-		e line				
0	Y Y		an/3		1115	eu Wa	i iine	Jiaste		uppo	JUL 2	e, Fl(прр	ring	, דוסס	s sag,	Beams			-	
0 /45	Y Span	 _	:2mm າm		_	Ws											011	nati	arv	Floo	
01 01	Y	I	an/2		-	**5									nich	er fir	n plast	with	ngçı	نانم	
		00	au/ 2						1						11311	.cr 111	י גימאו	vvilli	י גאיי		

	OK OK	C		ar	Bend Shea			x15x2		C290			ition Secti		Be		GL1 3.5m			m Lab n (L):	
	К	C			Com		r	embe	le M	Sing											
	К	C	n	ectio	Defl																
									Em	1-2	oan (L		Tot								
		Max	5kN	76	_	RB*				.) – 3		ai sh	10			*	=RA	5kN	76	Max	
		Min	5kN		_													5kN		Min	
				LAL /	0.0			0	2		L-D-a	27	0		01kN/		=	sw oof		ding	Loa
				kN/ı kN/ı			=	.0m .0m		x x	kPa kPa	27 25		=	Dead Live	L			RC		
				kN/i			=	.0m			kPa kPa	25 .29		=	-	Wind		-			
				kN/i			=	.0m		X	kPa kPa	.29 54	}	=		ind, d					
				kN/i				.011	2	X	kPa kPa	54	υ.		Snow		VVI	-			
fact	load	Live		kN/i			=	.7m	n	x x	кРа kРа	42	0	=	Dead	~		/all	10/	l	
0		Ψ,c		kN/i			-	.7111	2	x	kPa kPa	-+ <i>L</i>	0.	=	Live			all	vv		
0		Ψ,ι		kN/i			=	.3m	0	x	kPa	50	0	=	Dead	г		oor	Flo	ļ	
0		Ψ,s		kN/i			=	.3m		x	kPa	50 50		=	Live						
		,-		-, -			3		1				8						ses:	d Ca	Loa
		v)	(v	te:	t Stat	Limi	bility	viceal	Ser				v)	(\		te:	nit Sta	Lim	nate	Ultin	
1	kN/n	.4		=			₽,I Q		6.		m	kN/	.3		=		.5 Q	5+1.	1.2G	1.	
1	kN/n	.9	2	=		Ĺ	₽,s Q	G + 1	7.		m	kN/	2.0	-2	=	1	Vu,up	5 + W	0.9G		
1	kN/n	.6	2	=				Ws	8.		m	kN/	.3	4	=	+ΨcQ	/u,dw+	δ+Wι	1.2G	3.	
						ation	Vibr	1kN	9.		m	kN/	.7	2	=	2	ı+ΨcQ	S+Su	1.2G		
											m	kN/	.8	2	=				1.35		
																	:	ons		sign /	Des
Min			Max		5.		1.		3.		2.		L.						-	Case	
0kN	-		.6kNi		.4		.1		5.6 7.6		3.0		.6				*= W x			_	
.5kl	-3		7.6kN		.0	5	.7	4	7.6	<u> </u>	8.5	-3	.6	/	=	2	NxL/	* = V			^
																				acity	Сар
		(·		l. N.I. au		4	N 4 -										1.0		-	Bend	
	Append			kNm	5.1	-	Mo =		-						2.1.1(2		1.0		Cb =		
	2.2.3(4,			kNm	7.8 5.9		/lol = lod =			-axes	bout y-	-			eff. ler		900		ey =		
	2.2.4(4,		1 161, N	kNm								ting	or twis		eff. ler e 7.2.2		900 0.9		ez = Ø _b =		
				kNn	B.6	-	=	y l						.1		Mpa	550		_{рь} – fy =		
)K		.5			Ratio	acity	l Capa						IVIPC	550		1 y -		
							_	endin			_								r:	Shea	
N)	tion ?	locat	ame			-	ending					lenath	panel	shear	mm	3500	3	a =	000	
	/A		04		=		-	+(V*/			_				depth	-	85.00		d1 =		
						· ,		/ .		, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			-	5, 100		eq. D.	6.30		kv =		
							1							К		kN	58.4		Vv =		
																				lecti	Def
n/1	Spa	=	nm	2r	=	Ψ,I Q	G + 4				n4	6mn	x10⁄	.30	10	=	fftive	l,ef	s:	Limit	
С	Y	50	ban/2	Sp	inten	d ma	rs and	erato	у ор	ess b	acee	offit,	oss s	s acr	ight i	-of-s	e line	here	ns w	Bear	
С	Y	00	ban/3	Sp	alls	ed wa	rline	plaste	orts	upp	oor S	e, Fl	rippl	oring	, Floo	s Sag	Beam	sts/E	r Jois	Floo	
С	Y		<2mm	<													ion	orati	r Vib	Floo	
210	Spa	=	nm	2r	=	Ws															
n/14 0	Y		ban/2														h plast				

	K K	_			Benc Shea	1	.5	·ь к15х2.	Livir Dx45		L		tion: Section				GB2 2.4m		C 1.	m Lab า (L):	
\neg	K	-	d	bine			**********	ed or	*****									8		(_).	- 19 41
	ĸ			ectio	-		,				200										
					Den			-													
									.4m	.) = 2	oan (L	al Sp	Tot								
		Max	2kN		=	RB*									1	*	=RA		7.2	Max	
_		Min	9kN	-1.9														9kN	-1.9	Min	
_														/) D1kN/	0.0		<i></i>		dings	100
_			m	kN/ı	0.8		=	.9m	2	х	kPa	27	0	=	Dead	-	=	sw of		unig:	LUa
_				kN/i			=	.9m		x	kPa	25	<u> </u>	=	Live						
				kN/ı			=	.9m		x	kPa	.29	f	=	-	Wind					
				, kN/ı			=	.9m		x	kPa	54		=		nd, d					
				kN/ı			=		-	х	kPa			=	now						
act	load	Live		kN/ı			=	.7m	2	х	kPa	42	0.	=	Dead	[all	W		
0.	=	Ψ,c	m	kN/ı	0.0		=			x	kPa			=	Live						
0.	=	Ψ,Ι	n	kN/ı	0.5		=	.9m	0	x	kPa	50	0.	=	Dead	[ck	+ Deo	oor ·	Fl	
0.	=	Ψ,s	m	kN/ı	1.4		=	.9m	0	x	kPa	50	1.	=	Live						
																			ses:	d Cas	Loa
		v)		:e:	t Stat			viceal					w)			te:				Ultin	
	kN/m			=			₽,I Q		6.			kN/ı	.0		=			i + 1.!			
	kN/m			=			₽,s Q		7.			kN/i	6		=		u,up				
_	kN/m	.5	2.	=				Ws	8.			kN/I	.0			1	i,dw+				
						ation	Vibra	IKN	9.			kN/i	.4 2		=		ͱΨcQ				
_											11	kN/ı	.2	3	=		[1.35 Actic	5. Sign A	Dor
lin	n 1		Max		5.		l.	+	3.		2.		L.	1						Case	Des
	-1.2		.3kNi	Λ			+. .4		3.6		<u>.</u> .2				=	1^2/	= W x	M*-		_	
9kN			7.2kN		.9	1	.4	-	5.0		2			-	=		/xL/				
				L				<u> </u>	-								-/			acity	Cap
								-	-											Benc	14
(D)	Append	(D2.1	1	kNm	5.1	15	Mo =))	2.1.1(2,	(eq Di	.0		Cb =		
	2.2.3(4)		1	kNm	7.8	17	/lol =	Ν		-axes	bout y	ding a	or buck		eff. ler	÷	00	9	ey =	L	
	2.2.4(4)	eq. 7	۱	kNm	5.9	25	lod =	M				ting	or twis	ngth fc	eff. ler	mm	00	9	ez =	L	
		/lbd)	/bl, N	be, N	in(Ml	ØМі	Vlb =	Ør						.1	e 7.2.2	Claus).9	0	Ø _b =		
			ı	kNm	7.2	27	=								1	Mpa	50	5	fy =		
			ЭК	C	.2	0	=	Ratio	acity	Сара											
					ar:	l shea	g and	endin	ed be	nbine	Com								r:	Shea	
N		tion ?	locat	ame	ar at s	shea	g and	ending	m be	imu	Max		length	panel	shear	mm	100	24	a =		
	/A	N/	.02	0.	=	') ²	ØvVv	+(V*/9	VIs) ²	/Øы	(M*		Ь	ofwel	depth	mm	5.00	285	d1 =		
															3(4)	eq. D.	.30		kv =		
_														K	0	kN	9.1	11	Vv =	-	
																				lecti	Def
	Spai	=	nm			₽,I Q						6mn		.60		-	ftive			Limit	
0	Y		oan/2					erator							-						
0	Y		oan/3		JIIS	a wa	r iine	plaste	orts j	upp	oor S	e, ⊦l	rippl	ring	, +100	s sag					
0	Y		<2mm		_	Ws) 	ratic	d V D	Floo	
191	Spai Y	I-	nm ban/2	_	-	vv5							<u> </u>		aich	orfi	plast			Caili	
0			י י חבר	C.,																	

	K K	C		ar	Bend Shea		******	15x2.		C290			tion: Secti	eam S			GB3 5.0m			m Lab า (L):	
	К	0	d	bine	Com		BTB)	ed or	Box	ble (Dou										
	К	C	n	ectio	Defl																
									5m	L) =	pan (otal S	Тс			4		<u></u>			
		Max	2kN		=	RB*										<u>^ </u>		2kN		Max	
		Min	2kN	-13													1	.2kN	-13.	Min	
																					•
				/											01kN/	1	=	sw		ding	Loa
				kN/I			=	0m		Х	kPa	27		=	Dead	L		oof	Rc		
				kN/I			=	0m	hanne	х	kPa	25	<u> </u>	=	Live						
				kN/I			=	0m	-	X	kPa	.29	}	=		Wind	_				
				kN/I			=	.0m	6.	X	kPa	54	0.	=		nd, d	VVI	-			
	load	1		kN/i			=	7~	2	X	kPa kPa	20	0	=	now	1		 /all	1.8.4		
ract 0		Live Ψ,c		kN/ı kN/ı			=	.7m	2.	X	kPa kPa	30	0.	=	Dead Live			/all	VV		
0		Ψ,c Ψ,I		kN/i			=	6m	0	x x	кра kPa	50	^	=	Dead			oor	El-		
0		Ψ,i Ψ,s		kN/i			-	6m		x	kPa kPa	50 50		-	Live	L			FIC		
0	-	Ψ,5	11	KIN/I	0.9		-		U		кга	50	1.	_	Live		_			d Ca	100
			1.		+ C+-+	1:00:	.:I:+. <i>.</i>	ui oo ol	Cor					1.		+					LUd
	L(N) /m		(v		t Stat			viceal				LAL/.		(v	_	te:	nit Sta				
	kN/n kN/n		3. 4.	=			₽,I Q ₽,s Q		6. 7.			kN/ı kN/ı	.9 .3		=		5 Q Vu,up				
	kN/n		4.	=			₽,s Q	Ws	7. 8.			kN/i	.3 .9				vu,up ′u,dw+				
	KIN/II	2	5.	-		ation	Vibr	-	o. 9.			kN/i	.9 .6		=	1	u,uw¬ ι+ΨcQ				
						ation	VIDI	TKIN	9.			kN/i	.0 .7		=		ιτψιά		1.35		
												KIN/I	. /	5	-		•			sign A	Dog
/in			Max		5.	5		4	3.		2.	2		1			•			Case	Des
5kN			L.5kN	2	,. 6			-	5. 1.5		 6.5		5		_	102/	*= W x	Γ./·*	-		
3.2k			.7.2kľ				.4		1.5 7.2		3.2		7.2		=		NxL/				
.21	-1		.7.281		.5		. 1	5	1.2	1	5.2	-1.	.2	1/	-	2	/V X L /	- •		acity	Can
																				Bend	Cap
	A	(0.2.1		kNm	5.1	10	Mo =								2.1.1(2	(a. D)	1.0		Cb =		
x DJ	Append			kNm	7.8	-	/lol =			avac	houtu	lina al	rhual		eff. ler	· ·	900		сы – еу =		
	2.2.3(4) 2.2.4(4)			kNm	.8 5.9		od =	-		-uxes	Jour y-	-			eff. ler	1	900		ez =		
	2.2.4(4)		1bl <i>,</i> N												e 7.2.2		0.9		Ø _b =		
		libuj		-				Ψ						.1		-			-		
				kNm	v.2		=	D - 1 ¹ -		<u> </u>					3	Мра	550		fy =		
			K	C	.8		=	Ratio										-		C h	
N	,	ion ²	locat	3000			-	endin					lor - · '	na	ak - 1	mm	5000	-		Shea	
N					ar dt S			nding					-		shear		5000		a =		
	/Α	N,	11	U.	-	') ⁻	ØvVv	+(V*/(vis)⁻-	∕Øbľ	(IVI*)		b	of web	depth		35.00	_	d1 =		
														V		eq. D3	5.30 . 15.4	-	kv =		
														K	U	kN	.15.4	1	Vv =		D-1
. 1-				~			<u> </u>							07						lecti	Det
n/6		=	1m am /2			₽,I Q						6mn					fftive			Limit	
C	Y		an/2												-		e line			_	
C	Y		an/3		alls	ea wa	r iine	biaste	orts	uppo	oor S	e, ⊦lo	rıppl	ring	, FIOO	s sag,	Beam			-	
0	Y	ו 	2mm			147-											on	orati	r Vib	Floo	
n/4	8	= 00	nm		=	Ws									aiah		 			Cell	
0	Y	UU	an/2	Sr.				1	1						nish	er fir	n plast	with	ngs \	celli	

	m Lak n (L):			GL1 3.5m		1		ition: Secti		I		Livir 0x45	י ⁶ (15x2	.5		Ben Shea				OK OK	
эра			L	5.511		De	am						embe				bine	h)K	
											Singi	eivi	embe	i i							
																Den	ectio	<u>n</u>		Ж	
					Г										1						
								Tot	tal Sr	oan (l) = 3	.5m									
	Max	11.	6kN	=RA	*										RB*	=	11.	6kN	Max		
	Min	-2.8	8kN														-2.	8kN	Min		
Loa	ding		sw	=	0.0)1kN/	/m														
		Rc	of		-	Dead	=		27	kPa	х		.0m	=			kN/				
						Live	=		25	kPa	Х		.0m	=			kN/				
					Wind		=		.29	kPa	Х		.0m	=			kN/				
				Wi	nd, d		=	0.	54	kPa	Х	3	.0m	=			kN/				
					8	now	=	-		kPa	Х	-	_	=			kN/			<u> </u>	
		W	'all		5	Dead	=	0.	42	kPa	X	2	.7m	=			kN/			loac	
	-					Live	=	^	FO	kPa kPa	X	-	1 ~~	=			kN/		Ψ,c Ψ,I		0
	F	loor	+Dec	К		Dead Live	=		50 50	kPa kPa	X	-	.1m .1m	=			kN/				0 0
1.00						Live	-	Т.	50	кра	х	L	. 1111	-		1.7	kN/		Ψ,s	-	0
LOa	d Ca						1.					C • •		 	1:			1.			
	1.		Limi		te:			v) .6	LNI/			Ser	vicea		1	t Sta			∾) 	LAL/	
	1. 2.		i + 1.5 i + W			=	-	.0 6	kN/ kN/			ь. 7.	_	Ψ,I Q Ψ,s Q			= =	-	.7 .2	kN/r kN/r	
	2. 3.				-ΨcQ				kN/			7. 8.	Ws	Ψ,s Q			-		.2 .6	kN/r	
	3. 4.		i+vvu i+Su+		1	-		.3 .7	kN/			8. 9.	-	Vibra	ation	\	-	2	.0	KIN/I	
	ч. 5.	1.35		ΨιQ		=		. <i>י</i> .4	kN/			5.	IKIN								
De	sign /						5														
	Case						1	L.		2.	:	3.	4	1.	5	5.		Max			Min
	Mon	nent	, M*=	= W x	L^2/	=	10).1	-2	2.5	8	3.1	5	.6	5	.2	1	0.1kN	m	-2	.5kN
	Shea	ar, V'	* = W	xL/	2	=	11	L.6	-2	2.8	g	9.3	6	.4	5	.9		11.6k	Ν	-	2.8kl
Cap	bacity	/ :																			
	Ben	ding:																			
		Cb =	1	.0	(eq D2	2.1.1(2))							Mo =	15	5.1	kNn	n	(D2.1	Appen	dix D)
	L	.ey =	90	00	mm	eff. ler	ngth fo	or buck	ding a	bout y	-axes		Ν	∕lol =	17	7.8	kNn	n	eq. 7.	2.2.3(4	!)
	1	ez =	90	00	mm	eff. ler	ngth fo	or twis	ting				N	1od =	25	5.9	kNn	n	eq. 7.	2.2.4(4	!)
		Ø _b =	0	.9	Claus	e 7.2.2	.1						Ø	Mb =	ØМ	in(M	be, N	۸bl, N	/lbd)		
		fy =	5	50	Mpa									=	13	3.6	kNn	n			
											Сара	city	Ratio	=	0	.7	(ЭК			
	Shea	ar:											endin	-							
		a =	35	500	mm	shear	panel	length	1				ending	-		ar at s			tion i		N
		d1 =	285	5.00	mm	depth	ofwe	b		(M*	∕Øbľ	∕ls)²∙	+(V*/	ØvVv	() ²	=	0	.08	N,	/A	
		kv =	6.	30	eq. D3	3(4)															
	Ø	Vv =	58	3.4	kN	0	K														
De	flecti	on:																			
	Limi			tive			.30		\6mn						₽,I Q			nm	=	8 1	an/1(
						-							erato					pan/2		Y	С
					s Sag,	, Floo	ring	rippl	e, Fl	oor S	uppo	orts	olaste	er line	ed wa	alls		pan/3		Y	С
	Floo	r Vib	ratio	n														<2mn	ן 	Y	C
					er fir										Ws	=		nm pan/2]=	Spa Y	an/14
																		a a m / 7	1 11 1	× V	0

	<u>ОК</u> ОК		_	Ben Shea			indov Dx1.85			£		ition Secti	eam S	4		GL2 2.6m		en	m Lab า (L):	
	ОК	d	bine	Com			embe		**********								&			•
!	#DIV/0		ectio		-				0											
					1															
								.6m	.) = 2	oan (L	tal Sp	Tot								
	Max	7kN	7.7	=	RB*										*	=RA	7kN	7.7	Max	
	Min	BkN	2.3														BkN	2.3	Min	
													/m)1kN/	0.0	=	sw	5:	ding	Loa
		n	kN/ı	0.0		=			х	kPa	27	0.	=	Dead	[oof	Rc		
		n	kN/ı	0.0		=			х	kPa	25	0.	=	Live						
		n	kN/ı	0.0		=			х	kPa	.29	-1	=	d, up	Wind					
		n	kN/ı	0.0]=			х	kPa	54	0.	=	own	nd, d	Wi				
		n	kN/ı	0.0		=			х	kPa			=	now	S					
ad fac	Live lo	n	kN/ı	1.1		=	.7m	2.	х	kPa	42	0.	=	Dead	['all	W		
(Ψ,c =	n	kN/ı	0.0		=			х	kPa			=	Live						
(Ψ,Ι =	n	kN/ı	0.8]=	6m	1.	х	kPa	50	0.	=	Dead	[ck	+ De	oor	Fl	
(Ψ,s =	n	kN/ı	2.4		=	6m	1.	х	kPa	50	1.	=	Live						
																		ses:	d Cas	Loa
	/)	(v	te:	t Stat	Limi	bility	viceal	Ser				N)	(\		te:	t Stat	Limi	nate	Ultin	
/m	6 kN	3	=			₽,I Q	G + 1	6.		m	kN/	.9	5	=		5 Q	i + 1.	1.20	1.	
/m	6 kN	3.	=		Į	₽,s C	G + 1	7.		m	kN/	.8	1	=		u,up	i + W	0.96		
/m	0 kN	0	=				Ws	8.		m	kN/	.3	3	=	ΨcQ	ı,dw+	i+Wι	1.20	3.	
				ì	ation	Vibr	1kN	9.		m	kN/	.3	3	=		-ΨcQ	i+Su-	1.20	4.	
										m	kN/	.6	2	=			G	1.35	5.	
																	ons:	\ctio	sign /	Des
Mir		Max		5.	5	1 .	4	3.	:	2.	2	l.	1						Case	
1.5kN	n	.0kNı	5	.2	2	.8	2	.8	2	.5	1	.0	5	=	L^2/	= W x	, M*:	nent	Mom	
2.3k		7.7kN		.4	3	.3	4	.3	4	.3	2	.7	7	=	2	/xL/	* = W	r, V	Shea	
																			acity	Car
																			Benc	
endix ח	(D2.1 App	1	kNm	5.1	15	Mo =							·))	2.1.1(2	(ea D	0	1	Cb =		
	eq. 7.2.2.	-	kNm	s.5	-	/ol =			axes	bout v-	klina a	or bucl		eff. ler	<u></u>	. 50		ey=		
	eq. 7.2.2.		kNm	.5		lod =					-			eff. ler	1	50		ez =		
1				in(Ml							5			e 7.2.2	1).9	·	Ø _b =		
_			kNm	5.0									-		Mpa		† · · · · · · · ·	fy =		
)K		.8	-		Ratio	city	Cana					•	ivipo			· y -		
							endin		•									r	Shea	
1	ion ?	locat	amo			-	nding			_		lonat	nanal	shear	mm	500	24	a =	Jied	
		10ca		=		-	num _≹ ⊦(V*/				ı	-	-		1					
_	N/A	10	U.	-	/)	<i>ω</i> ννν	+(V*/	vis)-I	∕Øbľ	(IVI * ,		b	ofwe	depth		5.00		d1 =		
														1 1	eq. D.	30		kv =		
)K	0	kN	8.7	2	Vv =	-	
																			lecti	Def
Span/9	0	nm	-		Ψ,I Q						^6mn			4.0		ftive			Limit	
(50 Y	ban/2	Sp	inten			erato	y ope	ss b	acee	offit,	oss s	s acr	ight i	-of-s		here	ns w	Bean	
)0 Y	ban/3					olaste													

	OK OK			ar	Bend Shea		******	×15x2.	*******	.C290			ition Secti		Be		GL3 2.7m			m Lab າ (L):	
	Ж	C	d	bine	Com		r	embe	le M	Sing											
	Ж	C	n	ectic	Defl																
]			7.00	1-2	oan (I		Tot			[
		Max	7kN	15	_	RB*	-			_) – 2 		ai sh	10		F	*	=RA	7kN	15	Max	
		Min	7kN		-	ND											-1\/A	7kN		Min	
				1.1															<u> </u>		
								_						/m) D1kN,	0.0	=	sw	ç.	ding	loa
			n	kN/ı	0.3		=	.2m	1	x	kPa	27	0.	=	Dead	1		oof		<u></u>	
				kN/i			=	.2m		x	kPa	_, 25		=	Live	_					
				, kN/i			=	.2m	1	x	kPa	.29		=	d, up	Wind					
				kN/i			=	.2m	1	х	kPa	54	0.	=		nd, d	_				
			m	kN/ı	0.0		=			х	kPa			=	now	S					
fact	load		n	kN/ı	1.1		=	.7m	2	х	kPa	42	0.	=	Dead	[/all	W		
0		Ψ,c		kN/ı			=			x	kPa			=	Live					ļ	
0		Ψ,Ι		kN/I			=	.3m		x	kPa	50	0.	=	Dead] [ck	+ De	oor	Fl	
0	=	Ψ,s	n	kN/ı	5.0		=	.3m	3	x	kPa	50	1.	=	Live						
																			ses:	d Ca	Loa
		v)		te:	t Stat	1		viceal	-				v)			te:	it Sta			-	
	kN/n	.6	-	=			₽,I Q		6.			kN/	L.6		=			6 + 1.		117 I	
	kN/n	.8	-	=		2	₽,s Q	_	7.			kN/	.3		=		/u,up				
	kN/n	.0	1.	=				Ws	8.			kN/	.4	-		1	u,dw+				
						ation	Vibr	1KN	9.			kN/	.7		=	2	+ΨcQ			-	
									-			kN/	.2	4	=				1.35		Dor
Min			Max		5.				3.		2.		L.	1			•			s ign / Case	Des
LkN			0.6kN	1(,. .8		 .2	-	5.8		1).6		_	102/	= W x	· N/*	-		
.7kN			15.7ki		.8 .7		. <u>2</u> .7		3.6				5.7		=		×				
		-					.,							1.		_				acity	Can
									-											Bend	Cap
ix D)	Append	(D2.1	1	kNm	5.1	15	Mo =))	2.1.1(2	lea Di	1.0		Cb =		
	2.2.3(4		۱	kNm	7.8	17	/lol =	Ν		-axes	bout y	ling a	or buck		eff. lei	+ · ·	900		ey=		
	2.2.4(4			kNm	5.9		od =				Í	-			eff. lei	1	900		, .ez =		
		/lbd)	1bl, N	be, N	in(Ml	ØМ	Vb =	Ø						.1	e 7.2.2	Claus	0.9	. (Ø _b =		
			n	kNm	B.6	13	=)	Mpa	550		fy =		
			Ж		.8		=	Ratio	acity	Capa									,		
							g and	endin											ır:	Shea	
N	>	tion î	locat	ame			-	ending					length	panel	shear	mm	700	2	a =		
	/A		11		=			+(V*/					Ь	ofwe	depth	mm	5.00	28	d1 =		
							_				·					eq. D.	5.30		kv =		
														К	0	kN	9.1	5	Vv =	Ø	
																			on:	lecti	Def
n/12	Spa	=	nm	2r	=	Ψ,I Q	G + 4				n4	6mn	x10⁄	.30	10	=	ftive	l,ef	ts:	Limit	
С	Y	50	pan/2	Sp	inten	d ma	's an	erato	у ор	ess b	acee	offit,	oss s	s acr	ight i	-of-s	e line	here	ns w	Bear	
С	Y	00	oan/3	Sp	alls	ed wa	rline	plaste	orts	upp	oor S	e, Fl	rippl	oring	, Floc	s Sag					
С	Y	1	<2mm	<													on	oratio	r Vib	Floo	
. 1	Spa	=	nm	0r	=	Ws															
n/77 0	Ŷ		ban/2														n plast				

Bean	n Lab	el:		GL4			Loca	ation	:			Gara				Ben	ding		0	K	
Span	ı (L):			1.0m	١	Be	am	Secti	on:	- former 1000			0x2.50		4	Shea)K	
										9	Singl	e M	embe	r	4		bined			Ж	
																Defl	ectior	ו	0	К	
					F																
		6.0			4			Т	otal S	Span (L) = :	1m		4			6.01				
	Max			=RA	*										RB* :	=	6.3		Max		
	Min	1.0	KIN														1.0	(N	Min		
							,														
Load	ding			=)1kN/										~ ~	1.51/				
		Ro	ot	1	L	Dead	=			kPa	X			=			kN/m				
					14/5-00	Live	=			kPa	X			=			kN/m				
							=			kPa kPa	X			= =			kN/m kN/m				
				VVI		now	=			kPa	x x			=			kN/m				
		\٨/	الد		1	Dead	=			kPa	x			=			kN/m		Live		factors
-		vv	an			Live	=			kPa	x			-			kN/m		Ψ,c		0.4
		Flo	or		Г	Dead	=	0	50	kPa	x	Δ	.4m	-			kN/m		Ψ,C Ψ,I		0.4
		- 110			-	Live	=	÷	.50	kPa	x	÷	.4m	=			kN/m		Ψ,i Ψ,s		0.7
loar	d Ca	<u>ر</u> هد.				_, v C				in u	~			i		5.0			.,5		0.7
			limi	+ 5+21	tor		6	N)				Sor	viceal	aility	limit	- Stat	- <u>o</u> ·	(\	<u>م</u>		
	1.				le.	=		2.6	kN/	'm		6.	G+U		1 1	l Sta	=	6.	-	kN/r	n
						-		2.0 0	kN/			0. 7.	G+U		-		=	6.		kN/r	
	2. 3.			-					kN/			7. 8.	Ws	+,s C			=	0.		kN/r	
	-				1	=			kN/			9.	_	Vibr	ation		_	0.	0	KIN/I	
	5.					=		.0	kN/			5.	<u> </u>	101							
	-																				
	Case		,					1.		2.	:	3.		l.	5		ſ	Max			Min
			M*:	= W x	1^2/	=		6).2).7	_	.7	0.			6kNn	n		2kNm
		,			•	=		5.3		L.O	-	2.6	_	.6	1.			.3kN			L.OkN
	acity							-						-		-		-			
· ·																					
		-	1	.0	lea Di	2.1.1(2))							Mo =	15	.1	kNm		(D2.1	Appen	dix D)
				~~~~~~				or buc	klina a	bout y-	axes		_	/lol =			kNm			2.2.3(4	
					1	eff. ler								lod =			kNm			2.2.4(4	
			RoofWind,WallWind,WallWind,WallVFloorIFloorISteISteISteISteISteISteISteISteISteISteISteISteISteISteISteISteISteISteISteISteISteISteISteISteISteISteISteISteISteISteISteISteISteISteISteISteISteISteISteISteISteISteISteISteISteISteISteISteISteISteISteISteISteISteISteISteISteISteIS	1	e 7.2.2											be, M		•		,	
		Floor         ses:         mate Limit State: $1.2G + 1.5 Q$ $0.9G + Wu, up$ $1.2G+Su+WcQ$ $1.2G+Su+WcQ$ $1.2G+Su+WcQ$ $1.35G$ Actions:         es:         nent, M*= W x L/2         y:         Cb = $0.9$ Lez = $900$ Material $\phi_b$ = $0.9$ $fy =$ $550$ Material $a =$ $1000$ $fy =$ $6.30$ $eq.$ $6Vv =$ $64.9$ $kN$ $fy =$ $fy =$	3		••						<b>"</b>	=			kNm						
		1y -	J	50	ivipa						Cana	city	Ratio	=			O	,			
	Shea	٩r٠									•	•	endin					•			
	JIEC		10	000	mm	shear	nanel	lenati					ending	-			ame l	ocat	ion ?	)	No
			*****					-		-			+(V*/			=	0.0				
						depth	of we	ט		יי ועו	ומשין	vis) ·	τ( V °/9	۷۷۷	') 		0.0	~ <b>~</b>	IN,	/A	
	đ				1	1	K														
Dof			0		N N		· N						_								
			Leff		_	0	01	v10	\ \			-		<u> </u>		_	0	m	_	S m m	n/1001
	Limi		-			8.8			^6mr				orata		Ψ,IQ d mai		0m		=		n/1981
						-												an/25		Y v	OK
					s odg,	, רוטס	nng	iihb	ie, Fl	001.2	uppo	ט וכ	piaste	r HN(	eu wa	115	-	an/30 2mm		Y Y	OK OK
	<b>LIOQ</b>	מועי	LATIC	111	1			1	1												UK



	<u>ок</u> ок	-	5		Ben Shea			imm x15x					ocatior m Sect			Beam Label:         GB4           Span (L):         6.0m           PL Location, a =         2.0m				
	Ж	0	on	ect	Defl			•	N/A			ed:	ire Rate	F	Dm	2.		, a =	ation	L Loc
	A	N	Temp																	
								W2		L	P	V1 •								
																N/m	) 1kN	0.0	=	sw
												╇┻━			-	_				
									6m	L) = (	pan (	otal S	Т							
		Max	.6kN		* =	RB*									RA*	=	2kN	13.	Max	
		Min	1kN				- = 4m	an B	Sp				A = 2m	Span			7kN		Min	
																		5:	ding	Loa
							ea)	ry Ar	ribut	(Ti						PL:	ad, P		Poin	
	kN	.9	1	=	2m	1.	x	, 9m	-	x	kPa	.27	= 0	ead	C		of			
	kN	.8	_	=	2m		x	9m		x	kPa	.25		Live					š	
	kN	).1	-	=	2m		X	9m	÷	x	kPa	1.29			Wind					
	kN	.8	_	=	2m		х	9m		х	kPa	.54			Wind, d	1				
	kN	.0	0.	=			х			х	kPa		=	now						
	kN	.0	1	=	2m	1.	х	7m	2.	х	kPa	.30	= 0	ead	C		all	W	(	
	kΝ	.0	0	=			х			х	kPa		=	Live						
	kN	.2	2	=	2m	1.	х	0m	3.	х	kPa	.60	= 0	ead	C		oor	Flo		
	kN	.4	5	=	2m	1.	х	0m	3.	х	kPa	.50	= 1	Live						
	kΝ	.0	5	=	Dead										PI					
	kΝ	.2	7.	=	Live															
	kΝ	).1	-9		nd, up								<b>Z</b>		*	~				
	kN	.8	3	=	down	nd, c	Wi									T				
	kN	.0	0	=	Snow	5						_								
							ea)	ry Ar	ribut	IT)						/1:	<b>I, W</b> :	Load	UDL	
			/m		0.1		=	2m	-	Х	kPa	.60		ead	D		oor	Flo		
			/m		0.3		=	2m	0.	Х	kPa	.50	= 1	Live						
	kN/	.1		-	Dead		_									_				
	kN/	.3			Live										1	_				
	kN/	.0	_		nd, up							_	_		w1					
	kN/	.0		-	down		Wi						2			Δ				
n	kN/	.0	0.	=	Snow					/-						/ <u>)</u> .				
			/m	1ct	0.1	-		ry Ar	-		k Da				-				UDL	
-			/m /m		0.1		=	2m 2m	200000000000000000000000000000000000000	X	kPa kPa	.60		ead			oor	FIC		
 m	kN/	.1	/m		0.3 Dead		=	2m	U.	х	kPa	50	= 1	Live		_				
	kN/	.1 .3		-	Live							_				_				
	kN/	.3 .0	_	-	nd, up	\ <b>\</b> /in										_				
	kN/	.0		-	down							_	2	w2		-				
	kN/	.0	_	-	Snow		VVI						-			Δ				
	KIN/	.0	0.	-	JIIUW	2										_				



	Ultin	nate	Limit	Stat	e:					Sen	viceability	Limit Sta	te:			
			+ 1.5							6.	G+Ψ,IQ			= 0.	.40	١
										o. 7.	G + Ψ, ι Q G + Ψ, s Q		(Ψ,ι (Ψ,s =		.40	/
			+ Wu			Ψ,cQ (Ψ	c -	0.40		7. 8.	G+Ψ,s Q Ws		(4,5 -	- 0.	70	1
			+ vvu + Su ·			+,ιų (Ψ	,c =	0.40	,	8. 9.	1kN Vibra	ation				
		1.26		·Ψ,	ų		_			<i>.</i>						
	J.	1.350														
Dec	sign /	Actio	ne												-	
563	-1611 /						B	ending M	omen	t(k	Nm)			_		
	-10.0													_		
	-5.0												-	1.35	G	
	0.0	0.00	0.60		1.20	1.80	2.40	3.00	3.60	4	.20 4.80	5.40	6.00	1 26	i + 1.5	^
														1.20	1.5	ų
	5.0		N										-	0.96	i + Wu	,up
	10.0			N		$\sim$							_	1.26	i + Wu	.dow
	15.0													+Ψ,α	Q	
	20.0												-	<b>— 1.2</b> G	i + Su +	⊦Ψ,c0
	25.0												-  - <b> </b>			
	30.0															
	-															
				Crit	ical c	ase:	1	1	.2G +	1.5	Q	1				
	Case	s:					1.	2.	3.		4.	5.	м	ax		Min
		ient,	M*			= 3	24.9	-5.5	18	.1	13.0	9.8	24.9	kNm	-5	.5kN
		ır, V*					13.2	2.7	9.		6.9	5.1		2kN		
		tions		RA*			13.2	-2.7	9.		6.9	5.1		2kN	-	2.7k
				RB*			7.6	-1.1	5.		3.9	2.9	7.6			1.1k
							-									
Cap	acity	<i>ı</i> :														
	-		Cond	litio	ns:	(LL	) Later	al-Lateral			Commen	ts:				
			sht Pc					Centre			Restrains		by floc	or joists	at	
	_	-	Leng		L=	0.4	m				400crs					
			ØМ		=	27.2	kNm	1		She	ar: Ø∖	/w =	114.8	k N		
		-	øм		=	27.2	kNm				pacity Rati		0.1	ОК		
	Min	(ØMs	x,ØN		) =	27.2	kNm	1								
			Ratio		=	0.9	ОК									
Def	lecti	on:								)						
Def	lecti	on:					SLS De	eflections	(mm)							
Def		on:					SLS De	eflections	(mm)							
Def	lecti -10.0	on:					SLS De	eflections	(mm)							
Def			0.6		12						2 48	54	6.0			
Def	-10.0	0.0	0.6		1.2	1.8	SLS De	eflections 3.0	(mm) 3.6		.2 4.8	5.4	6.0		G + 1	Ψ,Ι Q
Def	-10.0 -5.0 0.0	0.0	0.6		1.2						.2 4.8	5.4	6.0		_	Ψ,I Q Ψ,s Q
Def	-10.0 -5.0	0.0	0.6		1.2						.2 4.8	5,4	6.0		_	
Def	-10.0 -5.0 0.0	0.0	0.6		1.2						.2 4.8	5,4	6.0		G + 1	
Def	-10.0 -5.0 0.0 5.0	0.0	0.6		1.2						.2 4.8	5,4	6.0		G + 1	
Def	-10.0 -5.0 0.0 5.0 10.0	0.0	0.6		1.2						.2 4.8	5.4	6.0		G + 1	
Def	-10.0 -5.0 0.0 5.0 10.0 15.0	<b>0.0</b>				1.8	2.4	3.0	3.6		G+4	ν,ι Q =	9mm		G + V Ws	
Def	-10.0 -5.0 0.0 5.0 10.0 15.0	<b>0.0</b>				1.8	2.4	3.0	3.6			ν,ι Q =	9mm		G + V Ws	Ψ,s Q
Def	-10.0 -5.0 0.0 5.0 10.0 15.0 Limi [*] Bear	0.0	nere	line	-of-si	1.8	2.4	3.0	<b>3.6</b>	ope	G+4	ע, ו Q = d mainter	9mm Span		G + V Ws	Ψ,s Q pan/6



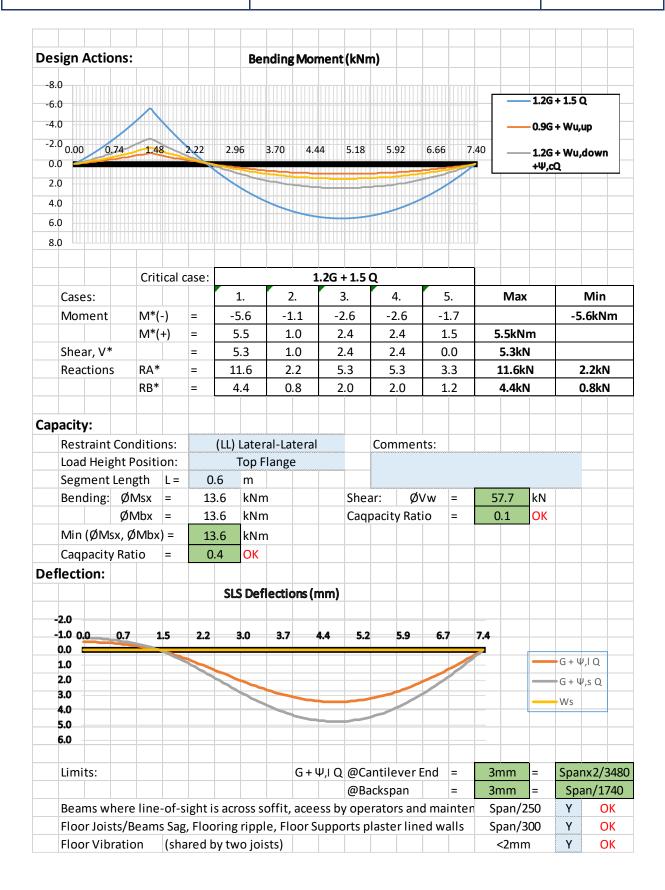
## S5.0 Wall Framing

esign resid				-							vviti		ne s	τομ		_
pplied fra	aming is	89L	.C/5 G5	50 <i>,</i>	plat	e cla	assitic	ation	= P(							_
	(5.1															_
Roof Rafte	ers/Puri	ins Si	ummary	/:							г					_
Location	Label	Spa	an S	pacin	g	Wir	nd Zone	e Ro	oof Ty	/pe		Desig Iethc			Туре	
Typ. Purlin		0.9	m	0.9m			High		Light	t	Ta	ble 9	9.1	4	ORB55	
Jamb Stud	l Summa	ary:														
Location	Stud Height		baded nension		Ope	ning		Desig Metho		-	mbe 1b st	-				
Upper F	2.7	(	6.0m		0-0.	.7m		Table 7	7.15		1					
Upper F 2.7 Upper F 2.7		(	6.0m	0.7-2.0m				Table 7.15			2		1			
		(	6.0m		2.0-3	3.3m		Table 7.15			3		1			
Upper F	2.7	(	6.0m		3.3-4	1.6m		Table 7	7.15		4		1			
Lower F	2.7	(	6.0m	0-1.4m				Table 7	7.17		2		1			
Lower F	2.7	6.0m			1.4-2	2.1m		Table 7	7.17		3					
Lower F	2.7	(	5.0m		2.1-2	2.7m		Table 7	7.17		4					
Window S	ill :															
- Window si	ill and wi	nd be	am desig	gns are	e det	flecti	ons go	verns								_
- Limit out-o			-	-			_		ard Pa	art 1						
Opening Siz	ze	=	3.50	m												
Tributry Wi		=	1.35	m			Limitir	g Defl	ectio	n =	23	mm				
SLS Wind Pr	essure	=	0.73	kPa			Deflec	tion =			16	mm		ок		
150LC75				lx =	0.0	60	x10^6	nm4		E =	2	00	Gpa			
Number of	sill sectio	on req	luired	=	1	L										
Typ. Single	sill meml	<u>per is</u>	okay for	open	ing u	ip to	3.5m									
Top Plates	5:															
- Upper floc	or studs a	re rec	quired to	be ali	igne	d wit	h truss	es abo	ve to	avoid	lloa	ding	on to	p pla	ate	
- Lower floc	or floor jo	ists lo	oading ar	e sup	porit	ng by	y boun	dary jo	ists							
Wall Stude																
Location	Stud		baded		Spac	cing		Desig		Stu	ıd Ty	ре				
Upper Ex	Height 2.7m		nension ax 6.0m		600	)crs		Metho Table			SC					_
Upper Int	2.7m		ax 6.0m		600			Table			SC					
													-			_
Lower Ex	2.7m	Ma	ax 6.0m		600	)crs		Table	7.9		SC					



- Lim	nit out-of	-plan	e de	flecti	onsa	as pe	r NA	SH St	andard Pa	art 1									
- Ass	ume Q=0	).7kN	Soft	body	/ imp	act is	s sha	red b	y two stu	ds									
Labe	el: L	.BW 2	.7																
Loca	tion: I	ntern	al																
Stud	Height		=	2	70	m													
				m			Limiting	defle	ection	_	18	mm	(Ws,	Ноі	σht/	150)			
					kPa			Linneng			=					-	ht/20	)())	
				ly =	0	17	x10^6 mi	m4		F =		00	Gpa	uct,					
UJLC	.75 0550					SLS, w		=	0.30	kN/	m				Opu				
					Ws	Ws Defl		n	6	mm	ОК			Imp	act		5	mm	ОК
						ULS,	w	=	0.45	kN/	m								
						My*		=	0.41	kNn	ı								
								=	0.20	kNn	kNm per		on						
Axia	l Loads:																		
	Floor	DL		=	0.	50	kPa	х	5.20	m	=	2.6	kN/ı	n					
		LL		=	1.	50	kPa	х	5.20	m	=	7.8	kN/ı	n					
									1.2DL+	1.5LL	=	15	kN/ı	n					
										Nc*	=	8.9	kN/s	stud					
89LC	75 provi	ded fy	/Nc=	9.3kl	N > 8.	9kN,	ther	efor	e Okay										
Prov	ide dout		ow f	fiving	toto	nn an	d ho	ttom	nlate										




# S6.0 Floor Framing

	m Lab	,ei.		J1			Loca						oists	_	8 1		ding			)K	
Spar	n (L):			5.0m		Be	am S	section	on:				(15x2			Shea	-		-	)K	
										Si	ingl	e Me	embe	r			bine			/A	
																Detl	ectio	n	C	Ж	
															1						
								-	tal C		· ·										
	Max	4 5	LNI		*			10	otal S	pan (L	.) = :	m		4		_		LAI	May		
	Max	4.5		=RA											RB* :	=		5kN	Max		
	Min	0.8	KIN														0.0	ßkN	Min		
1.00	م الم				0.0	71.01															_
LOa	ding		SW	=		)7kN/		0	F0	L/Da		0	<u>(</u>	_		0.2	LNI/-			_	
		Flo	100		L	Dead	=		50	kPa	X		.6m	=			kN/r		Ψ,Ι		0.4
						Live	=	1.	50	kPa	х	0.	.6m	=		0.9	kN/r	n	Ψ,s	=	0.7
Loa	d Ca											-									
				t Stat	:e:		(v						vicea			t Sta			N)		
	1.	1.2G				=	1.		kN/			6.		Ψ,I Q			=	-	.7	kN/n	
				u,up		=	0.		kN/			7.		Ψ,s Q			=		.0	kN/n	
	_				ΨcQ		0.		kN/			8.	Ws	0.0			=		.0	kN/n	
	4.			·ΨcQ		=	0.		kN/			9.	G + (	Q (Vi	bratio	on)	=	1	.2	kN/n	n
_	5. •	1.35	-			=	0.	.5	kN/	m											
Des	sign /		ons:	1								<u> </u>									
	Case						1			2.		3.	_	4.	5			Max			Min
					L^2/	=	5.			1		.5	-	.5	1.			.6kN			1kNm
	-		' = W	xL/	2	=	4.	.5	0	).8	2	.0	2	.0	1.	.3	4	4.5kN	1	C	).8kN
Сар	bacity																				
		ding:																			
		Cb =		.0	(eq D2	2.1.1(2,	))						-	Mo =	28	-	kNm		(D2.1	Appen	dix D)
		ey=	~~~~~	00	mm	eff. len	gth fo	r buck	ling a	bout y-a	xes		-	/lol =	17	-	kNm		eq. 7.	2.2.3(4	)
		.ez =	60	00	mm	eff. len	gth fo	r twist	ting				-	1od =	17		kNm			2.2.4(4	)
		Ø _b =	0	.9	Clause	e 7.2.2.	1						Ø	Mb =	ØМі	n(M	be, N	1bl, N	/bd)		
		fy =	25	50	Mpa									=	13	.6	kNm	1			
										C	ара	city	Ratio	=	0.	.4	0	K			
	Shea	ar:								Comb	oine	d be	endin	g anc	Ishea	ar:					
		a =	50	000	mm	shear	oanel l	length		Maxii	mur	n be	ndin	g and	shea	r at s	same	loca	tion i	<b>&gt;</b> [	No
		d1 =	29	90	mm	depth	of web	,		(M*/	ØьN	/ls) ² +	+(V*/	ØvVv	) ²	=	0.	05	N	/A	
		kv =	6.	31	eq. D3														(		
	ø	Vv =	57	7.7	kN	0	К														
Def	flecti	on:																			
	Limi		I,eff	tive	=	10.	30	x10⁄	6mn	n4				G + 1	₽,I Q	=	3n	nm	=	Spa	in/172
	_									acees	s b	/ ope	erato					an/2		Y	OK
										oor Su								an/3		Y	OK
Flo	or Vi				<u> </u>									G+(		=		nm	=	Spa	in/105
				n L/5	600. <	12mr	n						-	-				an/5		Y	OK
				•	tive l			30	x10 ⁴	^6mm4	4				Widt	th of	floor		3	0m	
					lastic		20		Gpa								cknes		Şunnan	nm	
						city =	2.		Gpa								acing		Śwanowanie	mm	
		_				,													2		
	Kd =	0.88	3 - 0.	34 lo	g10[(	kc/kt	o)+0.4	44] =		0.7	4				w =	81.5	5494	kg/n	n2		
	_				2/ s^3			-		35.7											
	kb =									16.4											
	Kx =									3433											
										154											
	Ky =	Ef x t	:†^3/	12 =																	
				12 = 18 Eb	Ib)					0.9		<	2mr	n	0	К					



	m Lak			J2				tion:		-{			r Jois			Ben				)K	
	:kSpa			6.0m				ectio		L	C290		15x2.	.5		Shea				)K	
an	t.Spa	n (C)		1.4m		Fii	re l	Rated	I:			N/A	I				ectio			)K	
					_		_									Limi	ted T	emp	N		
					_								W2				1				
				,	<u>*</u>	W	/1						VVZ								
N	=	0.0	)7kN,	/m			_		1								1				
					C	Cinori	•	- 1 4				D.C.		Circo							
	RA*	_	DL	_		. <mark>Span</mark> N Ma						RB*	an B	DL	_	0.9		A A	LNI	N / - 1	
	KA '	=		=	2.5kN 5.8kN		ax in	11.6 2.2k				KD.	-				kN	4.4 0.8		Max Min	
			-Wu		0.0kN			2.21						-Wu		0.0		0.0		IVIII	
			Wu		0.0kh									Wu			)kN				
			Su		0.0kl									Su		0.0					
0.2	ding	c ·	54	_	0.00	•								54	_	0.0					
Ja			al Di								/T	d b · · t									
	PUIN		ad, Pl	•		24	_	0.0	0	12D-		·····	ry Aro		0.4	- From	_	0	า	LN	
		VV	'all		De		-	0.3	U	kPa kDa	X	1.	0m	X	0.6	5m	=	0.		kN kN	
		C+	air		De		=	0.5	0	kPa kPa	x x	1	5m	X	0.0	5m	=	0. 0.		kN kN	
		ડા	dii				=	0.5 1.5		kPa kPa	x	÷	5m 5m	X X		5m	=	0. 1.		кі kN	
						ve -	-	1.5	U	ĸгd	X	<u> </u>		^		Dead		1. 0.0		kN kN	
															L	Live		1.3		kN	
			L												Wind			0.0		kN	
			<b>*</b>	Δ				2							nd, d	-		0.0		kN	
															1	now		0.0		kN	
	UDL	Load	l, W1	:							(Т	ribut	ry Ar	ea)							
			oor		De	ad =	=	0.5	0	kPa	x	7	, 6m	=	0	.3	kN/n	n			
					Li	ve =	=	1.5	0	kPa	х	0.	6m	=	0	.9	kN/n				
															٦	Dead	=	0.3	37	kN/	'n
																Live	=	0.9	90	kN/	'n
			W												Wind	d, up	=	0.0	00	kN/	'n
				Δ				Δ						Wi	nd, d	own	=	0.0	00	kN/	m
															S	now	=	0.0	00	kN/	m
	UDL	Load	l, W2	:							(Т	ribut	ry Ar	ea)							
		Flo	oor		De	ad =	= [	0.5	0	kPa	х	0.	6m	=	0	.3	kN/n	n			
					Li	ve =	=	1.5	0	kPa	х	0.	6m	=		.9	kN/n	n			
																Dead		0.3		kN/	
																Live		0.9		kN/	
					w2										Wind			0.0		kN/	
							4	٤						Wi	nd, d			0.0		kN/	
															S	now	=	0.0	00	kN/	m
							_														
oa	d Ca																				
				t Stat	e:							-	vicea		1	t Stat	_				
	1.		i + 1.5									6.		₽,I Q			(Ψ,Ι	=		40	)
	2.		i + W									7.		₽,s Q			(Ψ,s	=	0.	70	)
	3.				νn +Ψ,	cQ (4	۶,c	=	0.	40	)	8.	Ws								
	4.			+Ψ,α	Q							9.	1kN	Vibr	ation						
	5.	1.35	G							1		1	1								







	m Lak n (L):	/el.	J3 4.6m	Be	Loca am S	ection	: L	C290		mpus 15x2		She	ding ar			<u>ок</u> ок	
	cation	. a =	2.0m			Rated:			N/A				lectio	n		)K	
		, u			The								ited T				
						-W1	F	°L -		W2				ľ			
sw	=	0.07	۸/m														
				•		Total	Span (L	.) = 4.	6m								
	Max	5.7kN	I =RA	*								RB* =	5.3	BkN	Max		
	Min	-0.8k	N	Spar	n A = 2	2m			Spa	n B =	2.6m		-0.4	4kN	Min		
103	ding	c.															
LUa		s. t Load,	PL:					(Tr	ribut	ry Ar	ea)						
		Roof		Dead	=	0.27	kPa	x	·····	1m	x	0.6m	=	0	.8	kN	
				Live	=	0.25		x	÷	1m	x	0.6m	=		.8	kN	
				Wind, up	=	-1.29		x	ł	1m	x	0.6m	=		.0 8.9	kN	
				nd, down	=	0.54		x		1m	x	0.6m	=		.7	kN	
				Snow	=		kPa	x			х		=		.0	kN	
		Wal		Dead	=	0.30	kPa	х	2.	7m	х	0.6m	=	0	.5	kN	
				Live	=		kPa	х			х		=	0	.0	kN	
		Floo	r	Dead	=	0.50	kPa	x			х		=	0	.0	kN	
				Live	=	1.50	kPa	х			х		=	0	.0	kN	
				PL								Dead	=	1	.3	kN	
												Live		0	.8	kN	
				•								Wind, up			8.9	kN	
											Wi	nd, down			.7	kN	
												Snow	' =	0.	.0	kN	
	UDL	Load, \			1				8	ry Ar	. ·						
		Floo	r	Dead	=	0.50		Х		6m	=	0.3	kN/ı				
				Live	=	1.50	kPa	X	0.	6m	=	0.9	kN/ı		1	LNL/	
												Dead			.4	kN/	
			w	1								Live Wind, up	_		.9 .0	kN/ kN/	
				-								nd, down			.0 .0	kN/	
					Δ						VVI	Snow			.0	kN/	
	UDI	Load, ۱	N2:					(Tr	ibut	ry Ar	ea)	5110 W	-	0.		N 11/	
		Floo		Dead	=	0.50	kPa			6m	=	0.3	kN/ı	n			
				Live		1.50				6m	=	0.9	kN/r				
									\$			Dead			.4	kN/	m
												Live		0	.9	kN/	
				w2								Wind, up	=	0	.0	kN/	m
			Δ		Δ						Wi	nd, down	=	0	.0	kN/	m
												Snow	' =	0	.0	kN/	m
Loa	nd Ca	ses:															
			mit Stat	e:					Ser	vicea	bilitv	Limit Sta	ite:				
	1.	1.2G +							6.	1	Ψ,I Q		(Ψ,Ι	=	0.	40	)
	2.		Wu,up						7.		Ψ,s Q		(Ψ,s		-	70	)
	3.			wn +Ψ,cQ	(Ψ.c	=	0.40	)	8.	Ws	.,		.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,				,
	4.		Su + Ψ,		, . , .			,	9.	_	Vibr	ation					
	5.	1.35G	.,														



De	sign Acti	ons:					Bending	Mome	nt (ki	(m)							
	10						benanig	wome		,			_				
	-4.0														-1.35	e	
	-2.0 0.00	0.4	6	0.92	1.38	1.84	2.30	2 76	3.2	17	3.68	4.14	4.60		- 1.55	9	
	0.0	0.1	0	0.32	1.30	1.01	2.30	2.70			5.00				<b>-1.2</b> G	+ 1.5 (	Q
	2.0														-0.9G	+ Wu,	up
														_			•
	4.0													-	-1.2G +Ψ.c	+ Wu, A	dowr
	6.0															+ Su +	Ψ,cQ
	8.0													Ļ			
	10.0																
	10.0																
			Crit	ical c	ase.			1.2G	+ 1.5	0							
	Cases:					1.	2.		3.		1.	5.		Max			Min
	Moment	M*			=	7.7	-2.2	_	5. 5.1		.2	3.3	+ -	7.7kN			.2kN
	Shear, V				=	5.7	0.8	-	3.8		.9	2.2		5.7kľ		-2	
	Reaction		RA*		=	5.7	-0.8	_	3.8			2.2		5.7k			0.8kN
			RB*		=	5.3	-0.4		3.4		.7	1.9		5.3kl			0.4kľ
							0.1								1		
Cai	pacity:																
	Restrain	t Con	ditio	ns:	(	II) Late	ral-Later	al	~	Com	ment	ç.					
	Load Hei				· · · · ·		Flange			com	meme						
	Segment	-		L=	0.6												
	Bending	1		=	13.		n		Shea	ar:	Ø٧١	N =	5	7.7	kN		
		_	Лbх	=	13.						y Ratic			).1	ОК		
	Min (Ø№			) =	13.		n										
	Caqpacit			=	0.6	_		_									
	caqpaere	y nac			0.0												
De	flection:																
						SI S D	eflectio	ns (mn	<b>1</b> )								
						5650	circeito	15 (1111	, <b>,</b>								
	-3.0																
	-2.0 -1.0 0.0	_	5	0.9	1.4	1.8	2,3	2.8		2	3.7	4.1	4.6				
	0.0	0		0.5		1.0	2.5	2.0	3	£	5./		4.0		-	- G + V	4,1 Q
	1.0														—	= G + V	₽,s Q
	2.0							_							_	- Ws	
	3.0 4.0																
	4.0 5.0						+										
	Limits:										G+Ψ	,I Q =	4	mm	=	Spa	an/12
	Beams w	here	line	-of-s	ight is	across	soffit, ac	eess b	у оре	rato	rs and	maint	en S	pan/2	250	Y	0
	Floor Joi	sts/B	eam	s Sag	Floor	ing ripp	le, Flooi	Suppo	orts p	laste	er lineo	walls	S	pan/3	300	Y	0
	Floor Vit	oratio	n											<2mr	n	Y	0
											\ \	Vs =	3	mm	=	Spa	an/18



	m Lab n (L):		J4 6.0m	Be	Loca am S	Section:	L			mpus (15x2		Shea	ding ar			)К )К	
	cation	. a =	3.0m			Rated:	-		N/A	******			ectio	n		)K	
		, ~							,.					emp		A	
					-	W1		<mark>- ۱</mark>		W2							
sw	=	0.07k	:N/m														
				•		Total	Span	(L) = (	Sm								
	Max	6.9kN	=RA	*								RB* =	6.9	9kN	Max		
	Min	-0.7kM	١	Spar	n A = 3	3m			Sp	an B	= 3m		-0.7	7kN	Min		
1.00	dina						_										
LUd	ading:	t Load,	DI•				_	(т,	ihut	ry Ar	 معا						
	rom	Roof		Dead	=	0.27	kPa	x		.0m	x	0.6m	=	1	.0	kN	
		NUUI		Live	=	0.27	kPa	x	<u> </u>	.0m	x	0.6m	-		.9	kN	
				Wind, up		-1.29	kPa	x	}	.0m	x	0.6m	=		.6	kN	
				nd, down	=	0.54	kPa	x		.0m	x	0.6m	=		.0	kN	
				Snow	=	5.54	kPa	x	J.		x	0.011	=		.0	kN	
		Wall		Dead		0.30	kPa	x	2	7m	x	0.6m	=	0		kN	
	-			Live	=		kPa	x		·····	x		=		.0	kN	
		Floor	•	Dead	=	0.50	kPa	х			х		=		0	kN	
	- i			Live	=	1.50	kPa	х			х		=	0.	0	kN	
				PL					1			Dead	=	1	5	kN	
				I								Live	=	0	9	kN	
				¥								Wind, up	=	-4	.6	kN	
					Δ						Wi	nd, down	=	1	9	kN	
												Snow	=	0.	0	kN	
	UDL	Load, V	V1:					(Ti	ibut	ry Ar	ea)						
		Floor	•	Dead	=	0.50	kPa	х	0.	6m	=	0.3	kN/r	n			
				Live	=	1.50	kPa	х	0.	6m	=	0.9	kN/r	n			
												Dead		0	4	kN/	
												Live		0	9	kN/	
			W1	1			_				_	Wind, up			0	kN/	
			Δ		Δ		_				Wi	nd, down			0	kN/	
												Snow	=	0	0	kN/	m
	UDL	Load, V							8	ry Ar	~						
		Floor	•	Dead		0.50	kPa	х	******	.6m	=	0.3	kN/r				
				Live	=	1.50	kPa	х	0.	.6m	=	0.9	kN/r			/	
							_					Dead			.4	kN/	
				-								Live			.9	kN/	
				w2			_					Wind, up			.0	kN/	
			Δ				_				VVI	nd, down Snow			0	kN/ kN/	
							-					SILUW	-	0.		KIN/	
Loa	d Ca	ses:															
		nate Lir	nit Stat	te:					Ser	vicea	bility	Limit Sta	te:				
		1.2G +	1.5 Q						6.	G +	Ψ,I Q		(Ψ,I	=	0.	40	)
		0.9G +	Wu,up						7.	G +	Ψ,s Q		(Ψ,s	=	0.	70	)
		1.2G +	Wu,dov	wn +Ψ,cQ	(Ψ,c	= (	).40	)	8.	Ws							
	4.	1.2G + 3	Su + Ψ,	cQ					9.	1kN	Vibr	ation					



	sign A							Be	nding N	/ome	nt (k	Nm)								
	-6.0																			
	-4.0									_							_	1.350	G	
	-2.00	00	0.60		1.20	1.80	- 2	.40	3.00	3.60	4.2	20	4.80	5.4	10 F	5.00				
	0.0		0.00			1.00	-		3.00	5.00			1.00	9.				<b>1.2</b> G	+ 1.5 (	Q
	2.0									_								-0.9G	+ Wu,	up
	4.0		N												/				-	-
	6.0			$\mathbb{N}$															+ Wu,	,dowr
	8.0				$\searrow$		<u></u>											+Ψ,c -1.2G	Q + Su +	-Ψ.cΟ
	10.0					$\sim$														.,
	12.0																			
	14.0																			
				Criti	ical c	ase:				1.2G	+ 1.5	Q		_						
	Case	s:				ſ	1	. ſ	2.	1	3.	4	1.	5	5.	Ν	Лах			Min
	Morr	nent,	M*			=	12	.7	-3.5	9	).7	6	.8	5	.2	12.	7kNi	m	-3	.5kN
	Shea	ır <i>,</i> V*				=	6.	9	0.7	4	.4	3	.5	2	.5	6.	.9kN			
	Reac	tions	5	RA*		=	6.	9	-0.7	4	.4	3	.5	2	.5	6.	.9kN		-(	0.7kl
				RB*		=	6.	9	-0.7	4	.4	3	.5	2	.5	6.	.9kN		-(	0.7kl
Car	pacity	<i>ı</i> :																		
	Rest		Conc	litia	nc		(11)1	atora	l-Latera		-	Com	mer	nte ·			_			
	Load						••••••	op Fla	~~~~~~		~	con	mer	11.5.						
	Segn	-				0.			ange		1									
	-		-		L=			m			Cha		d			<b>F7</b>	-	1		
	Benc	ing:			=	13.	-	kNm		_	She			Vw	=	57.		kN		
		( d	ØM		=	13.		kNm			Caq	pacit	у кат	.10	=	0.1	L	ОК		
	Min	(ØMS	sx, Øľ		) =	13.	-	kNm												
	-				=	0.	9	ОК												
	Caqp		/ Rati	0	-	•														
	Caqp		/ Rati	0	_									_						
	Caqp		/ Rati	0	_															
De	Caqp flectio	bacity	v Rati	0	_															
De		bacity	' Rati	0			SI	_S Def	lection	s (mr	1)									
De	flectio	bacity	' Rati	0			SI	LS Def	lection	s (mm	ı)									
De	flectio	bacity	' Rati	0			SI	_S Def	lection	s (mr	ı)									
De	flectio -10.0	oacity										2	4.8			6.0				
De	flectio -10.0	on: 0.0	v Rati		1.2	1.8		LS Def	ilection: 3.0	s (mm 3.6		.2	4.8	5	4	6.0			- G + U	Ψ,I Q
De	flectio -10.0 -5.0 0.0	on: 0.0										.2	4.8	5	.4	6.0				Ψ,I Q Ψ,s Q
De	flectio -10.0 -5.0	on: 0.0										.2	4.8	5	4	6.0				
De	flectio -10.0 -5.0 0.0	on: 0.0										.2	4.8	5	4	6.0			- G + V	
De	flectio -10.0 -5.0 0.0 5.0	on: 0.0										.2	4.8	5	4	6.0			- G + V	
De	flectio -10.0 -5.0 0.0 5.0 10.0	on: 0.0										.2				6.0			- G + V	₽,s Q
	flectio -10.0 -5.0 0.0 5.0 10.0 15.0 Limit	on:	0.0		1.2	1.6	3	2.4	3.0	3.6			G+	Ψ,Ι Q	=	10m			- G + V	
De	flectio -10.0 -5.0 0.0 5.0 10.0 15.0 Limit	on:	0.0		1.2	1.6	3	2.4		3.6			G+	Ψ,Ι Q	=	10m	m n/29		- G + V	₽,s Q
	flection -10.0 -5.0 0.0 5.0 10.0 15.0 Limit Bean	on: 0.0 ts:	0.¢	5	1.2 -of-si	1.E	3 acro	<b>2.4</b>	3.0	<b>3.6</b>	y ope	erator	G+ rs an	Ψ,I Q d ma	= inten	10m Spa		50	- G + V - Ws	Ψ,s Q an/6
	flection -10.0 -5.0 0.0 5.0 10.0 15.0 Limit Bean	on: 0.0 ts:	0.¢	5	1.2 -of-si	1.E	3 acro	<b>2.4</b>	<b>3.0</b>	<b>3.6</b>	y ope	erator	G+ rs an	Ψ,I Q d ma	= inten alls	10m Spa	ın/25 ın/3(	50	= G + V - Ws Sp Y Y	۷,s Q an/6

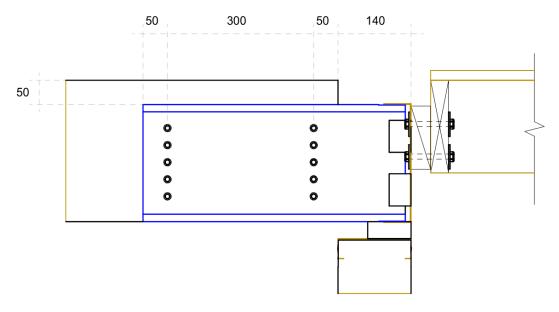


# S7.0 Miscellaneous

Load	ing	:																		
AS/N	ZS1	170.1	. Tabl	e 3.3	:															
Ту	pe c	of	Snor	cific l	lsos				То	op E	dge						Infil	1		
Оссі	upai	ncy	spec		Jses	ŀ	Horiz			Ver	t.		PL		H	loriz.		PL		
	А			Stair		0.3	85kN,	/m	0.	35k1	N/m	0	).60k	N	0.	50kPa	a	0.25k	N	
Verti	cal k	balus	trade	e spa	cing	=	0.	60	m											
Balus	trac	le He	ight			=	1.	20	m											
Тор	Rail	l:					(L	oad	Facto	or)										
Cases	:	1.	M*	=	0.	35	х	1.	50	х	0	.60	^2/8		=	0.0	2 k	Nm		
		2.	M*	=	0.	60	х	1.	50	х	0	.60	/4		=	0.1	4 k	Nm		
		2.	M*	=	0.	50	х	1.	50	х	1	.20	x L^2	2/8	=	0.0	2 k	Nm		
														M*	=	0.1	4 k	Nm		
Try		8	9LC7	5		G550	)													
		Сара	acity	Ratio	)	=	0	.2	ОК											
Post	:						(L	oad	Facto	or)										
Cases	:	1.	M*	=	0.	35	х	1.	50	х	0	.60	хH		=	0.3	8 k	Nm		
		2.	M*	=	0.	60	х	1.	50	х	1	.20	/2		=	0.5	4 k	Nm		
		2.	M*	=	0.	50	х	1.	50	х	1	.20	/2 x	L x H	=	0.3	2 k	Nm		
									ļ					M*	=	0.5	4 k	Nm		
Try		8	9LC7	5		G550	)													
		Сара	acity	Ratio	)	=	0	.5	ОК											
Base	Co	nne	ctior	า:																
M* =		•	54	kNm				jd	=	l	210	mm								
Tensi	on l	Nt* =	M* /	′ jd =					2	.6	kN									



#### FLOOR JOIST STEP END CONNECTION:

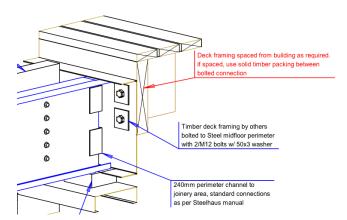

End shear force from joist: 1.2DL + 1.5LL: (1.2 x 0.5kPa + 1.5 x 1.5kPa) x 6m span x 0.45m spacing / 2 = 3.85kN V* = 3.85kN x 0.5m / 0.3m = 6.4kN/line

Provided two lines of 5/12g screws, V*,screw = 6.4kN/5 = 1.3kN/screw, 12Gscrew on 1.8BMT steel are ok by inspection

End shear force from joist:

1.2DL + 1.5LL: (1.2 x 0.5kPa + 1.5 x 1.5kPa) x 6m span x 0.45m spacing / 2 = 3.85kN V* = 3.85kN x 0.5m / 0.3m = 6.4kN/line

Provided two lines of 5/12g screws, V*,screw = 6.4kN/5 = 1.3kN/screw, 12Gscrew on 1.8BMT steel are ok by inspection






#### TIMBER DECK CONNECTION:

End shear force from DECK:

1.2DL + 1.5LL: (1.2 x 0.3kPa + 1.5 x 2.0kPa) x 3.2m span/ 2 = 5.4kN



Provided two M12 bolts, bearing on lightsteel:

/NZS 4600:2005 Cla				,		g son non		
Steel grade	G250							
t	1.85	mm						
d _f	12	mm						
α	1.00		table 5.3.4	.2(a)				
φ	0.6							
d _f /t	6.49							
С	3.00		table 5.3.4	.2(b)				
fu	320	MPa						
φV _b	12.79	kN						
/NZS 4600:2005 Cla	use 5.3.4	.3 - Bea	aring capacity	/ at a bo	It hole defo	mation of	6mm	
Steel grade	G250							
t	1.85	mm						
d _f	12	mm						
φ	0.65							
fu	320	MPa						
φV _b	8.63	kN						

#### Shear capacity on timber:

fyQn = 0.7 x 0.8 (k1) x 0.7 (green) x 6.97kN/bolt = 2.7kN, timber capacity governs

5.4kN / (2 x 2.7) = 1

Provide 2/M12 bolts at 900crs



Project Summary	
H1 Report created by:	Don Cowie Draughting & Design Ltd
Project Name:	Copy of 2/136 SH26
Client:	M. Cameron
Lot No:	Lot 2 DP556335
Comment:	
Project Id:	152854
Report Date:	22/02/2022

#### **Compliance Result**

This report shows compliance of the design with Clause H1 Fourth edition Amendment 4 from November 2019 and the Rvalue targets of Clause E3 Second edition Amendment 7 from November 2020. This building complies with H1 via the following methods:

• the Calculation Method in NZS4218:2009

#### H1 Compliance Details

#### NZS4218:2009 Calculation Method Compliance

The use of the Calculation Method is permitted .

In order to comply the Actual Heat Loss must be the same or smaller than the Reference Heat Loss AND all component Rvalues must be the same or larger than 50% of the R-values in the '50% Rule' table below. This design **complies** with the NZS4218:2009 Calculation Method.

<u>HeatLoss:</u>

Reference	e Proposed
building	building
636	589

Minimum R-values ("50% rule"):

	Permitted Minimum	Proposed Minimum	
Floor:	0.65	3.2	V
Non-solid Walls:	0.95	2.4	~
Roof:	1.45	2.46	~



The Reference building has the following areas and R-values.

		Non-solid	Solid Timber	Other Solid
		100.0	0.0%	0.0%
Floor:	Area: 225 m ² R-values	1.3	1.3	1.5
Walls excl. glazing:	Area: 101.2 m ² R-values	1.9	1.2	1
Glazing (up to 30%):	Area: 60.4 m ² R-values	0.26	0.26	0.26
Glazing (surplus of 30%):	Area: 39.8 m² R-values	0.4	0.34	0.31
Roof:	Area: 225 m ² R-values	2.9	3.5	3.5
Heat Loss:		636	671	676

For mixed constructions the heat loss of the reference building is calculated as the sum of the heat losses for each type of wall construction multiplied by the fraction of the wall area of each type. This approach is based on clause 4.2.6 of NZS4218:2009. There are no skylights in the reference building. The reference building roof area is the sum of the proposed building roof and skylight areas.

#### **Compliance with Clause E3**

This building complies with the R-value targets in NZBC Clause E3 .

Component	Minimum R-value	Project R-value
Framed wall constructions with cavities	1.5	2.4
Single skin masonry wall without a cavity	0.6	
Solid timber wall no less than 60 mm thick	0.6	
Roof or ceilings	1.5	2.46



#### **Design Details**

Building Dimensions	
Floor Area	225 m ²
Gross Wall Area	201.4 m ²
Net Wall Area	101.2 m ²
Wall (North) Area	30.9 m ²
Wall (East, South and West) Area	70.3 m ²
Gross Roof Area	225 m²
Net Roof Area	225 m²
Glazing Area	100.2 m ²
Window (North) Area	10.4 m ²
Window (East, South and West) Area	89.8 m ²
Skylight Area	0 m²

#### **Glazing Areas**

Total Vertical Glazing Percentage	49.8 %
East, South and West Window Percentage	56.1 %
Total over 30%	yes
East, South and West over 30%	yes
Total over 50%	no
max. Skylight Area for Schedule Method	3.38 m²
Skylights over Schedule Method Limit	no
Decorative Glazing	0 m ²
Decorative Glazing over 3m ²	no

Informatior	required	for BPI	calculation
-------------	----------	---------	-------------

Living Floor Area

Average Room Height

Thermal Mass Level

Climate
Location
Climate Zone

Hamilton & Ruakura

2.7

m

Medium weight

225 m² Note: This includes also internal floors.

Slab floor with some carpeting or direct glued timber, timber framed walls.

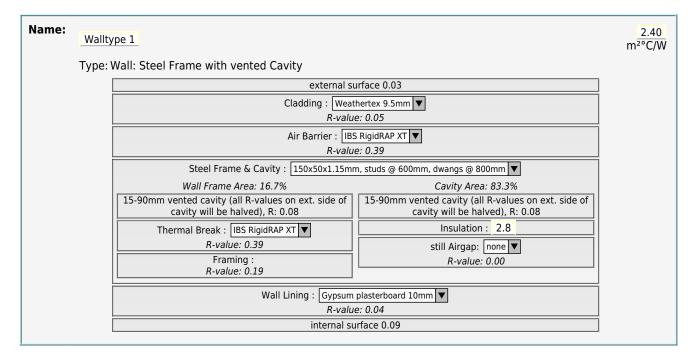


BC Number - DD007.2021.00043914.001

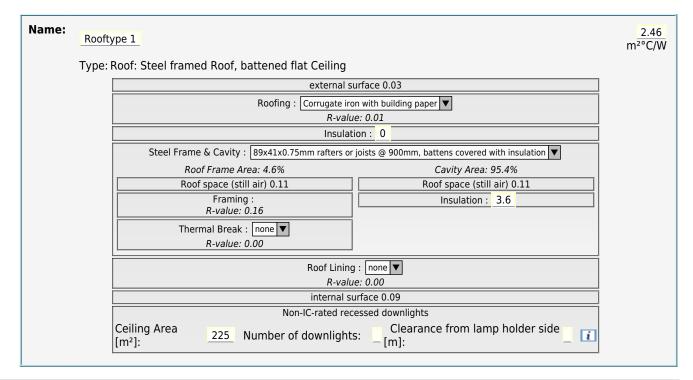
#### Heat Loss Details

	ID Or. V		Width	Height	Gross Area	Net Area	R*	Heat Loss	Shad. Coeff **	Solid ***
<u>Floors</u>										
Floor 1	Ground Floor				225.0	225.0	3.20	70.3		
<u>Walls</u>										
Wall 1	Wall 1	Ν	15.3	2.7	41.3	30.9	2.40	12.9		С
Window 1-1	N1		0.6	2.6		1.6	0.26	6.0	0.00	
Window 1-2	N2		0.6	2.6		1.6	0.26	6.0	0.00	
Window 1-3	N3		1.6	2.6		4.2	0.26	16.0	0.00	
Window 1-4	N4		0.6	2.6		1.6	0.26	6.0	0.00	
Window 1-5	N5		0.6	2.6		1.6	0.26	6.0	0.00	
Wall 2	Wall 2	W	22.0	2.7	59.4	16.2	2.40	6.8		С
Window 2-1	W1		3.0	2.6		7.8	0.26	30.0	0.00	
Window 2-2	W2		8.0	2.6		20.8	0.26	80.0	0.00	
Window 2-3	W3		2.0	2.6		5.2	0.26	20.0	0.00	
Window 2-4	W4		3.6	2.6		9.4	0.26	36.0	0.00	
Wall 3	Wall 3	S	15.3	2.7	41.3	33.6	2.40	14.0		С
Window 3-1	S1		0.6	1.6		1.0	0.26	3.7	0.00	
Window 3-2	S2		0.6	1.6		1.0	0.26	3.7	0.00	
Window 3-3	S3		1.6	1.6		2.6	0.26	9.8	0.00	
Window 3-4	S4		0.8	1.6		1.3	0.26	4.9	0.00	
Window 3-5	S5		0.6	1.6		1.0	0.26	3.7	0.00	
Window 3-6	S6		0.6	1.6		1.0	0.26	3.7	0.00	
Wall 4	Wall 4	E	22.0	2.7	59.4	20.4	2.40	8.5		С
Window 4-1	E1		1.8	2.6		4.7	0.26	18.0	0.00	
Window 4-2	E2		1.8	2.6		4.7	0.26	18.0	0.00	
Window 4-3	E3		8.0	2.6		20.8	0.26	80.0	0.00	
Window 4-4	E4		3.4	2.6		8.8	0.26	34.0	0.00	
<u>Roofs</u>										
Roof 1	Roof				225.0	225.0	2.46	91.5		
<u>Total Heat Lo</u>	<u>SS</u>							589.5		

* Any concrete slab-on-ground floor regardless of its dimensions can be assumed to have an R-value of at least R-1.3 (H1/AS1 2.1.5).


** The Shading Coefficient is only required for BPI calculations.

*** C: Cavity Construction (any construction that is not solid), T: Solid Timber, S: Other Solid Construction (Note that the use of solid timber and other solid construction types is discretional, i.e. solid timber walls and other solid walls can be treated as if they are non-solid (NZS4218:2009 section 4.1.3.).)


# BUILDING UNIT APPROVED

BC Number - DD007.2021.00043914.001

#### Wall Construction Details



#### **Roof Construction Details**





#### **Glazing Details**

Name:	Glazingtype 1	0.26 m²°C/W
	Type: Aluminium Frame	
	Glass Type : IGU Grey - 12mm gap ▼ <i>R-value: 0.26</i> <i>Solar Heat Gain Coefficient (SHGC): 0.50</i>	





Specifically prepared on: Product | Fixture:

Indicative Linear Meterage:

Project Name:

Site Address:

Legal Description:

## **SPECIFIER DETAILS**

Area where balustrade is installed: Company:

Phone:

Email:

Website:

#### 21-02-2022

Vetro(NoRail) | FS.2T.02.00-Wet Timber, Top Fix, 90mm CRS

Approx. 37 m

**Cameron Residence** 

Lot 2 SH26 Hamilton

Lot 2 DP 556335

First Floor level deck

Don Cowie Draughting & Design Services Ltd

0276041392

dcowie_design@hotmail.com

# BUILDING UNIT APPROVED

BC Number - DD007.2021.00043914.001

### **PRODUCER STATEMENT – PS1 - DESIGN**

Issued By:	ALAN H. THOMAS – CONSULTING ENGINEER
Issued To:	TO WHOM IT MAY CONCERN
Date:	21-02-2022
Project:	Cameron Residence
Site Address:	Lot 2 SH26 Hamilton
Legal Description:	Lot 2 DP 556335

This statement applies to the Vetro balustrade style as supplied by Unex Systems (NZ) Ltd for the

(1) First Floor level deck

Construction details are to be in accordance with the UNEX Fabricator's Manual - Semiframeless Glass NZBAL-C12.0. The maximum post spacing must not exceed the distance given on the following Manual pages, copies enclosed.

(2) Vetro(NoRail) | FS.2T.02.00-Wet Timber, Top Fix, 90mm CRS

I, Alan H Thomas hold a current Professional Indemnity Insurance policy for no less than \$200,000 and have been engaged by Unex Systems (NZ) Ltd to provide design services for their UNEX balustrading in respect of Clauses B1 and F2 of the Building Regulations. The design has been prepared in accordance with Clauses B1/VM1 and B1/AS1. The design of the load carrying members and their connections have been verified by load testing where applicable.

Materials and corrosion consultants have been engaged by Unex Systems (NZ) Ltd to provide a Durability Appraisal in respect of the requirements of clause B2 of the New Zealand Building Code. The appraisal has been prepared in accordance with verification method B2/VM1 of the approved documents issued by the Ministry of Business, Innovation & Employment, compliance with Clause B2 relies entirely on this appraisal.

I believe on reasonable grounds that subject to:

- 1. All proprietary products meeting their performance specification requirements.
- 2. The general arrangement and dimensions of the balustrade members, post spacing, fixing details and assembly methods being in accordance with the instructions in the current UNEX Fabricator's Manual - Semi-frameless Glass NZBAL-C12.0 and the above details.

The design of the balustrade and its fixings (excluding the supporting structure) complies with clauses B1, B2, F2 and F4 of the New Zealand Building Code.

#### Signed by ALAN H THOMAS

(Qualifying Engineer in accordance with Clause 1.0.3(e) of B1/VM1). Auckland Council registration number 1838. Southern Building Controls Group Author number PSA/2010/45. CONSULTING ENGINEER 42 Bryant Road, Te Rapa, HAMILTON 3200 PO Box 92, HAMILTON 3240

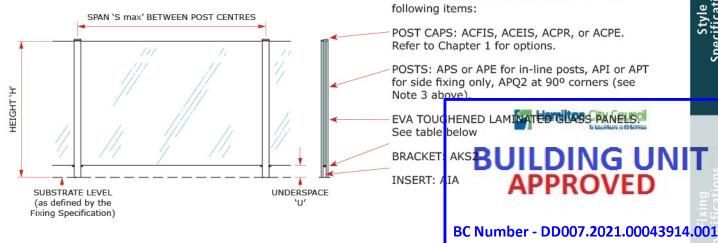
ons

Telephone: 07 850 9464



18/9/2020

Note: This Producer Statement must be accompanied by the relevant Style Specificatio Specification and Assembly Specification pages when submitted for Building Consent p


BC Number - DD007.2021.00043914.001

The balustrade shall be fabricated from the

# 'VETRO' (NO RAIL)

This specification details the members to be used, glass thicknesses required and the maximum spacing for the various posts for this style. A separate specification must be referred to for fixing to the substrate (refer to Chapter 3). Post spacing must not exceed the lesser of the spacing from both Chapter 2 and Chapter 3. NOTE: For the Vetro Style we recommend always using 4 Substrate fixings per baseplate to give lateral stability to the post, even if 2 fixings is structurally adequate. Refer to Page 56 for notes on balustrade deflection.

- Glass shall be GRADE A EVA TOUGHENED LAMINATED SAFETY GLASS suitable for exterior applications in 1. accordance with AS/NZS 2208, with a minimum thickness as determined from the Table below. Glass shall be supported and glazed in accordance with NZS 4223. All exposed edges to be Flat Polished.
- 2. Fabrication and Installation to be in accordance with Assembly Specification AS.35.00 on Page 119, the Installation Guides in Chapter 5, and all other relevant portions of the UNEX Fabricators Manual.
- APS and APE may be used for either "top fixed" or "side fixed". API & APT "side fixed" ONLY situations. 3.
- Both the vertical edges of the glass shall fully attach to the post with structural silicone, for the full height 4. and thickness of the glass.

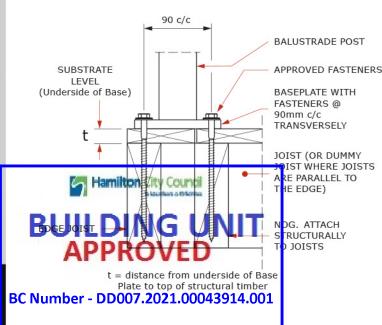


MAXIMUM POST CENTRES `S max' (metres)	
ALWAYS TAKE THE LESSER OF THE VALUE BELOW AND THE VALUE FROM THE FIXING SPECIFICATION	

				LOADING CLASS ⁽¹⁾																		
			No.			Ν	107C/	/N07	R			N03R	Not Preventing Falls									
HEIGHT ⁽³⁾	Post Type ⁽²⁾	Toughened Glass Thickness			D	)esig	n Wir	nd Sp	peed(	4)					D	esig	n Wii	nd Sp	peed(	4)		
			Line	VH		E	Н						м			н			VH		E	Н
				50	52	54	56	58	60	62	64	N/A	38	40	42	44	46	48	50	52	54	56
4000 400	10	2	1.39	1.39	1.39	1.38	1.29	1.20	1.13	1.06	1.65	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.49	1.3	
1.0	APR2 or APS	12	3	1.39	1.39	1.39	1.38	1.29	1.20	1.13	1.06	2.00	1.80	1.80	1.80	1.80	1.80	1.80	1.73	1.60	1.49	1.3
1.0	APE	12	4	1.77	1.77	1.77	1.76	1.64	1.53	1.44	1.35	2.00	1.80	1.80	1.80	1.80	1.80	1.80	1.80	1.80	1.80	1.7
	APE	15	5	1.77	1.77	1.77	1.76	1.64	1.53	1.44	1.35	2.00	2.40	2.40	2.40	2.33	2.24	2.15	2.07	1.98	1.90	1.7
	ADD2 or ADC	10	7	1.26	1.26	1.22	1.14	1.06	0.99	0.93	0.87	1.65	1.50	1.50	1.50	1.50	1.50	1.48	1.39	1.30	1.22	1.1
	APR2 or APS	12	8	1.26	1.26	1.22	1.14	1.06	0.99	0.93	0.87	2.00	1.80	1.80	1.80	1.69	1.59	1.48	1.39	1.30	1.22	1.1
1.1		12	9	1.61	1.61	1.55	1.46	1.36	1.27	1.19	1.11	2.00	1.80	1.80	1.80	1.80	1.80	1.80	1.73	1.64	1.55	1.4
	APE	15	10	1.61	1.61	1.55	1.46	1.36	1.27	1.19	1.11	2.00	2.36	2.24	2.13	2.02	1.92	1.82	1.73	1.64	1.55	1.4
		10	12	1.03	0.96	0.89	0.83	0.78	0.73	0.68	0.64	1.65	1.50	1.50	1.41	1.30	1.20	1.11	1.03	0.96	0.89	0.8
1.2	APR2 or APS	12	13	1.03	0.96	0.89	0.83	0.78	0.73	0.68	0.64	1.96	1.66	1.53	1.41	1.30	1.20	1.11	1.03	0.96	0.89	0.8
1.2	ADE	12	14	1.37	1.28	1.20	1.12	1.06	0.99	0.93	0.88	2.00	1.80	1.80	1.78	1.66	1.56	1.46	1.37	1.28	1.20	1.1
	APE	15	15	1.37	1.28	1.20	1.12	1.06	0.99	0.93	0.88	2.00	2.02	1.90	1.78	1.66	1.56	1.46	1.37	1.28	1.20	1.1

POST TYPES: Refer to Chapter 1 for details.

3.


HEIGHT 'H': is the overall height of the balustrade above the substrate level shown. Interpolate for Heights between those shown. DESIGN WIND SPEED: in m/s, Refer to Pages 51 to 52 for details of applicable wind codes and the methods for determining the Design Wind Speed for any 4. particular site.

57

# FIXING SPECIFICATIONS NZBAL-C12.0 | SPEC ID FS.2T.02.00

WET TIMBER - TOP FIXING, 90MM CRS

Refer to all notes on Pages 72 and 73 which shall apply to this specification and the relevant pages in Chapter 5 Installation Guides. Refer also to Chapter 2 for the Style Specification.



- For details of approved fasteners refer to 1. General Notes on Page 72 note 3.
- 2. Washers to be fitted under screw and bolt heads shall be as follows
  - For 6mm fasteners washer supplied with fasteners.
  - For FC8-165 fasteners washer supplied with fasteners.
  - For 8mm bolts 22mm O.D. S/S washer (Part No. FW8-22) with a polymer washer (Part No. FWP8-22G) between the S/S and the aluminium.
  - For Washers bearing against timber use 50 x 50 x 3mm stainless steel washers Part No FW10-50SQ.
- Substrate design including waterproofing and 3. the structural design of the timber substrate and its connections are not included in this specification and must be carried out by others.
- 4. Important, the FC8-165 coachscrews in this specification are to be used with the "Sika Supergrip 2 Hour" adhesive system (TASG).

2.84 2.84 2.68 2.44 2.24 2.05 1.89 1.75 1.62 1.51

2.73 2.73 2.58 2.35 2.15 1.98 1.82 1.68 1.56 1.45

2.61 2.61 2.46 2.24 2.05 1.89 1.74 1.61 1.49 1.39

3.46 3.46 3.27 2.98 2.72 2.50 2.31 2.13 1.98 1.84

2.35 2.35 2.22 2.02 1.85 1.70 1.56 1.45 1.34 1.25

2.26 2.26 2.13 1.94 1.78 1.63 1.51 1.39 1.29 1.20

2.15 2.15 2.04 1.85 1.70 1.56 1.44 1.33 1.23 1.14

2.86 2.86 2.70 2.46 2.25 2.07 1.91 1.76 1.63 1.52

1.97 1.97 1.86 1.70 1.55 1.43 1.31 1.22 1.13 1.05

1.90 1.90 1.79 1.63 1.50 1.37 1.27 1.17 1.08 1.01

1.81 1.81 1.71 1.56 1.43 1.31 1.21 1.12 1.03 0.96

2.40 2.40 2.27 2.07 1.89 1.74 1.60 1.48 1.37 1.28

		115 x 105	4 x FC8-165
	1.1	115 x 105	4 x FC8-165
	1.1	115 x 105	4 x FC8-165
		115 x 105	4 x M8 Bolts
		115 x 105	4 x FC8-165
Illatior	1.2	115 x 105	4 x FC8-165
		115 x 105	4 x FC8-165
ST		115 x 105	4 x M8 Bolts

1.0

115 x 105 4 x FC8-165

115 x 105 4 x FC8-165

115 x 105 4 x FC8-165

4 x M8 Bolts

115 x 105

MAXIMUM POST CENTRES 'S max' (metres)

1.51 1.51 1.51 1.51 1.41 1.31 1.23 1.16

1.46 1.46 1.46 1.45 1.35 1.27 1.19 1.11

1.39 1.39 1.39 1.39 1.29 1.21 1.13 1.06

1.84 1.84 1.84 1.84 1.71 1.60 1.50 1.41

1.38 1.38 1.34 1.25 1.16 1.09 1.02 0.96

1.33 1.33 1.29 1.20 1.12 1.05 0.98 0.92

1.26 1.26 1.23 1.14 1.07 1.00 0.93 0.88

1.68 1.68 1.63 1.52 1.42 1.32 1.24 1.16

1.26 1.22 1.13 1.05 0.98 0.91 0.86 0.80

1.21 1.17 1.08 1.01 0.94 0.88 0.82 0.77

1.16 1.12 1.03 0.96 0.90 0.84 0.78 0.74

12 1.54 1.48 1.37 1.28 1.19 1.11 1.04 0.98

		ALWAYS TAKE THE LESSER OF THE VALUE BELOW AND THE VALUE FROM THE STYLE SPECIFICATION																						
			Fasteners - Qty and				LOADING CLASS ⁽¹⁾																	
	Height ⁽³⁾	Baseplate Size		`t′	Fin			N	)7C/	'N07	R			N03R				Not	Preve	enting	g Fall			
				(See dia-	ne N	Design Wind Speed ⁽⁴⁾										D	esigr	n Wir	nd S	peed	(4)			
	D x W	Type ⁽²⁾	gram)	0.	VH		EH	l						м			Н			VH		E	Н	
						50	52	54	56	58	60	62	64	N/A	38	40	42	44	46	48	50	52	54	56

3.25

3.12

2.98

3.95

2.95

2.84

2.71

3.59

2.70

2.60

2.48

3.29

N/A 1. LOADING CLASS: Refer to Page 176 for the scope of the Loading Class designations.

19

25 2

32 3

N/A

19

25

32

N/A

19 Q

25 10

32

8

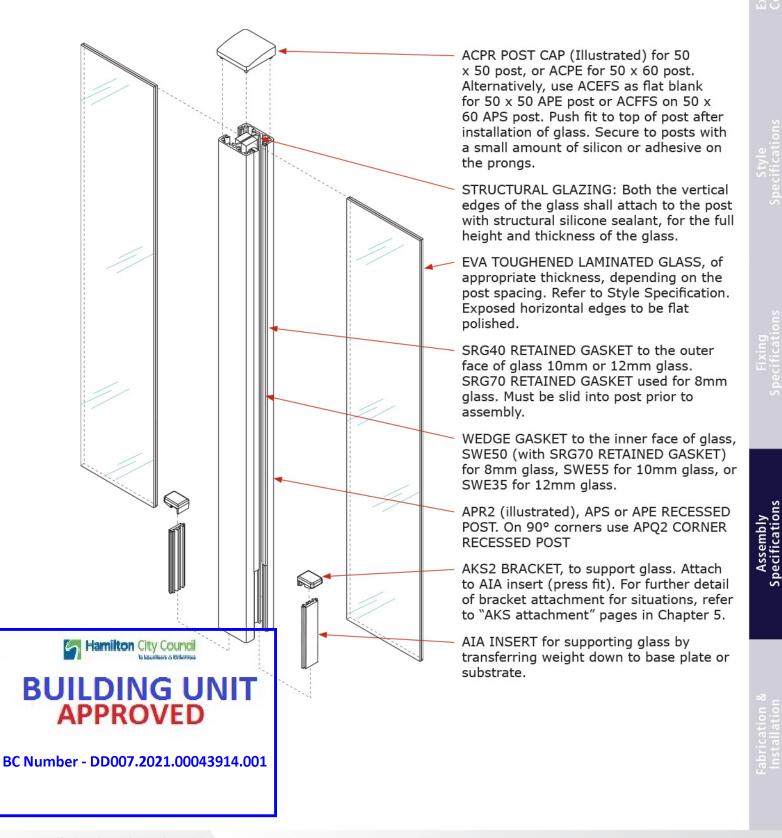
11

FASTENER DESIGNATIONS: beginning with 'F' are part numbers for fasteners supplied by UNEX eg. FC8-165: FC = Coach Screw Stainless Steel. 8 = 8mm diameter, 165 = length in mm; Substitution with other fasteners is not permitted. 2.

3.

HEIGHT 'H': is the overall height of the balustrade above the substrate level shown. Interpolate for Heights between those shown. DESIGN WIND SPEED: in m/s, Refer to Pages 51 to 52 for details of applicable wind codes and the methods for determining the Design Wind Speed.




Specifications subject to change without notice

86

## ASSEMBLY SPECIFICATIONS SPEC ID AS.35.00 | NZBAL-C12.0

# 'VETRO' (NO RAIL)

Refer elsewhere for corners, slopes and other situations not illustrated here.



Specifications subject to change without notice

### UNEX LOADING CLASSIFICATION

Below is an extract from AS/NZS 1170.1:2002, a standard which is cited in the NZBC. This table gives the minimum imposed actions on barriers for various occupancy types. To the right hand side of this table are the applicable UNEX Loading Classifications (ULC) which are stated in the specifications contained in this catalogue.

#### AS/NZS 1170.1:2002 TABLE 3.3 MINIMUM IMPOSED ACTIONS FOR BARRIERS

(UNEX Loading Classifications)

ULC

								cations
			Top Edge			Infill		
Type of occupancy for part of the building or structure		Specific Uses	Horizontal	Vertical	Inwards, Outwards, or Downwards	Horizontal	Any Direction	
			kN/m	kN/m	kN	kPa	kN	
A	Domestic and residential activities	All areas within or serving exclusively one dwelling including stairs, landings, etc., but excluding external balconies and edges of roofs (see C3)	0.35	0.35	0.6	0.5	0.25	 NO3F
		Other residential (see C3)	0.75	0.75	0.6	1.0	0.5	 N07R
B, E	Offices and work areas not included elsewhere including storage areas	Light access stairs and gangways not more than 600mm wide	0.22	0.22	0.6	N/A	N/A	 N02
		Fixed platforms, walkways, stairways and ladders for access	0.35	0.35	0.6	N/A	N/A	 N030
		Areas not susceptible to overcrowding in office and institutional buildings also industrial and storage buildings	0.75	0.75	0.6	1.0	0.5	 N070
REAS	WHERE PEOPLE MAY CONG	REGATE						
C1/C2	Areas with tables or fixed seating	Areas with fixed seating adjacent to a balustrade, restaurants, bars. etc.	1.5	0.75	0.6	1.5	1.5	 N15
СЗ	Areas without obstacles for moving people not susceptible to over- crowding	Stairs, landings, external balconies, edges of roofs, etc.	0.75	0.75	0.6	1.0	0.5	 N070
C5	Areas susceptible to over-crowding	Theatres, cinemas, grandstands, disctheques, bars, clubs, auditoria, shopping malls (see also D),	3.0*	0.75	0.6	1.5	1.5	 N30
		assembly areas, studios, etc						N 20(1
D	Retail areas	All retails areas including public areas of banks/building societies (see C5 for areas where over- crowding may occur)	1.5	0.75	0.6	1.5	1.5	 N15

Reproduced from AS/NZS 11 70.1:2002 with the permission of Standards New Zealand under License 000913.

This page is copyright to UNEX Systems (NZ) Ltd with the exception that the copyright for Table 3.3 of AS/NZS 1170.1:2002 is held by Standards New Zealand Pernisson of USEX Systems to use it has been obtained under Copyright License 000913

Specifications subject to change without notice BC Number - DD007.2021.00043914.001

